\( E^{\prime} \times \) Ecrire sous forme d'une phissance: \[ \begin{array}{l} \frac{10^{17}}{10^{2}} ; \frac{7^{11}}{7^{3}} ; \frac{1 y^{24}}{11^{5}} ; \frac{6^{24}}{6^{13}} \\ \frac{10^{27} \times 10^{11}}{1_{0}^{19}} ; \frac{10^{25}}{\left(10^{3}\right)^{4}} ; \frac{(1000)^{7}}{1011} \end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Pour simplifier chaque fraction sous forme de phissance : 1. \( \frac{10^{17}}{10^{2}} = 10^{17 - 2} = 10^{15} \) 2. \( \frac{7^{11}}{7^{3}} = 7^{11 - 3} = 7^{8} \) 3. \( \frac{y^{24}}{11^{5}} = y^{24} \cdot 11^{-5} \) (la base 11 devient négative) 4. \( \frac{6^{24}}{6^{13}} = 6^{24 - 13} = 6^{11} \) 5. \( \frac{10^{27} \times 10^{11}}{10^{19}} = \frac{10^{27 + 11}}{10^{19}} = 10^{38 - 19} = 10^{19} \) 6. \( \frac{10^{25}}{(10^{3})^{4}} = \frac{10^{25}}{10^{12}} = 10^{25 - 12} = 10^{13} \) 7. \( \frac{(1000)^{7}}{1011} = \frac{(10^{3})^{7}}{1011} = \frac{10^{21}}{1011} \) (qui est une forme mixte et ne se simplifie pas davantage). Résultat sous forme de phissance : \[ \begin{array}{l} 10^{15}, 7^{8}, y^{24} \cdot 11^{-5}, 6^{11}, 10^{19}, 10^{13}, \frac{10^{21}}{1011} \end{array} \]