Find the axs of symmetry \[ y=3 x^{2}-2 x \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the axis of symmetry for the quadratic function \( y = 3x^2 - 2x \), you can use the formula \( x = -\frac{b}{2a} \). Here, \( a = 3 \) and \( b = -2 \). Plugging in those values gives us \( x = -\frac{-2}{2 \cdot 3} = \frac{2}{6} = \frac{1}{3} \). Therefore, the axis of symmetry is the vertical line \( x = \frac{1}{3} \). Quadratic functions, like the one you're working with, create a "U" shaped graph or can even flip upside down. The axis of symmetry is crucial because it not only helps to understand the graph's shape but also allows us to find the vertex, which is either a maximum or minimum point! Another fun fact: this means that for every point on one side of the axis, there’s a mirror point on the other side. Neat, right?