For \( f(x)=\sqrt{x} \) and \( g(x)=x+4 \), find a. \( (f \circ g)(x) ; \) b. the domain of \( f \circ g \) a. \( (f \circ g)(x)=\square \) \( ( \) Simplify your answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find \( (f \circ g)(x) \), you substitute \( g(x) \) into \( f(x) \). Starting with \( g(x) = x + 4 \): \[ (f \circ g)(x) = f(g(x)) = f(x + 4) = \sqrt{x + 4} \] So, \[ (f \circ g)(x) = \sqrt{x + 4} \] Next, let’s determine the domain of \( f \circ g \): Since \( f(x) = \sqrt{x} \), the expression inside the square root must be non-negative. Therefore, we set: \[ x + 4 \geq 0 \] \[ x \geq -4 \] Thus, the domain of \( f \circ g \) is \( [-4, \infty) \). In summary: a. \( (f \circ g)(x) = \sqrt{x + 4} \) b. The domain of \( f \circ g \) is \( [-4, \infty) \).