Pregunta
\( 1 \leftarrow \quad \) Find the domain of the function. \( f(x)=\frac{5}{x-11}+\frac{1}{x-12} \) The domain of \( f(x) \) is \( \square \). (Type your answer in interval notation.)
Ask by Chavez Parry. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain of \( f(x) \) is all real numbers except \( x = 11 \) and \( x = 12 \). In interval notation, this is \( (-\infty, 11) \cup (11, 12) \cup (12, \infty) \).
Solución
To find the **domain** of the function \( f(x) = \frac{5}{x - 11} + \frac{1}{x - 12} \), we need to determine all real numbers \( x \) for which the function is defined.
The function involves two denominators: \( x - 11 \) and \( x - 12 \). These denominators cannot be zero because division by zero is undefined. Therefore, we must exclude the values of \( x \) that make either denominator zero.
1. **First denominator**: \( x - 11 \neq 0 \)
\[ x \neq 11 \]
2. **Second denominator**: \( x - 12 \neq 0 \)
\[ x \neq 12 \]
Thus, the function \( f(x) \) is defined for all real numbers except \( x = 11 \) and \( x = 12 \).
**Domain in Interval Notation:**
\[ (-\infty, 11) \cup (11, 12) \cup (12, \infty) \]
**Answer:**
\(\boxed{\,(-\infty,\ 11)\ \cup\ (11,\ 12)\ \cup\ (12,\ \infty)\,}\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the domain of the function \( f(x) = \frac{5}{x-11} + \frac{1}{x-12} \), we need to identify where the function is undefined. The function is undefined when the denominators are equal to zero, which occurs at \( x = 11 \) and \( x = 12 \). Therefore, the function is undefined at these two points, and the domain excludes them. In interval notation, the domain of \( f(x) \) is \( (-\infty, 11) \cup (11, 12) \cup (12, \infty) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium