Pregunta
upstudy study bank question image url

A company produces very unusual CD's for which the variable cost is \( \$ 18 \) per \( C D \) and the fixed costs are \( S \) 35000 . They will sell the CD's for \( \$ 58 \) each. Let \( x \) be the number of CD's produced. Write the total cost \( C \) as a function of the number of CD's produced. \( C=\$ \) Write the total revenue \( R \) as a function of the number of CD's produced. \( R=\$ \square \) Write the total profit \( P \) as a function of the number of CD's produced. Find the number of CD's which must be produced to break even. The number of \( C D \) 's which must be produced to break even is

Ask by Nichols Goodwin. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Total Cost:** \( C = \$35,\!000 + 18x \) - **Total Revenue:** \( R = \$58x \) - **Total Profit:** \( P = 40x - 35,\!000 \) - **Break-Even Point:** 875 CDs

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find your total cost \( C \) as a function of the number of CDs produced \( x \), you add the fixed costs to the variable costs incurred for each CD produced. So, the formula is: \[ C = 35000 + 18x \] For total revenue \( R \), which depends on the price per CD multiplied by the number of CDs sold, the equation is: \[ R = 58x \] Next, to determine total profit \( P \), subtract the total cost from the total revenue: \[ P = R - C = 58x - (35000 + 18x) \] \[ P = 40x - 35000 \] To break even, you need profit \( P \) to equal zero: \[ 0 = 40x - 35000 \] \[ 40x = 35000 \] \[ x = \frac{35000}{40} = 875 \] The number of CDs which must be produced to break even is 875. --- Did you know that the concept of break-even analysis dates back to the mid-20th century when businesses began closely studying their costs and revenues? It’s like a financial GPS that helps companies figure out at what point they’ll stop losing money and start making a profit. No wonder many entrepreneurs swear by it! In the real world, understanding break-even points can help businesses make smarter decisions about pricing, reducing costs, and planning production levels. For instance, if costs rise or projected sales fall, a company can quickly reassess how many units it needs to produce to stay afloat. It's like knowing exactly how many pancakes you need to flip to feed a crowd without running out of batter!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad