What effect does translating the radical function \( k(x) = \sqrt{x} \) vertically downward by 3 units have on its graph? Provide the new equation.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Translating the radical function \( k(x) = \sqrt{x} \) vertically downward by 3 units shifts the entire graph 3 units lower, impacting all y-values. This means that every point (x, y) on the original graph shifts to the point (x, y - 3). Consequently, the new equation representing this transformation is \( k(x) = \sqrt{x} - 3 \). This transformation changes the function's range, which originally starts from \( y = 0 \) and goes to infinity, to a new range starting from \( y = -3 \) and continuing to infinity. Thus, the new graph will touch the horizontal line at \( y = -3 \) and extend upward.