Pregunta
upstudy study bank question image url

Class work Without using a Ealculator, determine between whieh tho integers the following irrational numbers lie D) \( \sqrt{50} \) \( = \) \( = \) \( \therefore \) (2) \( \sqrt{29} \) \( = \) \( = \) \( \therefore \) \( 3 \sqrt[3]{45} \) \( = \) \( = \) - \( \quad \) - (1) \( -\sqrt{54} \) \( = \) \( = \)

Ask by Frank Mccoy. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ -\sqrt{54} \quad \text{lies between} \quad -8 \quad \text{and} \quad -7 \] \[ \sqrt{29} \quad \text{lies between} \quad 5 \quad \text{and} \quad 6 \] \[ \sqrt{50} \quad \text{lies between} \quad 7 \quad \text{and} \quad 8 \] \[ 3\sqrt[3]{45} \quad \text{lies between} \quad 10 \quad \text{and} \quad 11 \]

Solución

Sure, let's determine between which two integers each of the given irrational numbers lie without using a calculator. --- ### (1) \( -\sqrt{54} \) **Step 1:** Find the nearest perfect squares around 54. - \( 7^2 = 49 \) - \( 8^2 = 64 \) **Step 2:** Determine where 54 falls. - \( 49 < 54 < 64 \) **Step 3:** Apply square roots. - \( 7 < \sqrt{54} < 8 \) **Step 4:** Since we have a negative sign: - \( -8 < -\sqrt{54} < -7 \) **Conclusion:** \[ -\sqrt{54} \quad \text{lies between} \quad -8 \quad \text{and} \quad -7 \] --- ### (2) \( \sqrt{29} \) **Step 1:** Find the nearest perfect squares around 29. - \( 5^2 = 25 \) - \( 6^2 = 36 \) **Step 2:** Determine where 29 falls. - \( 25 < 29 < 36 \) **Step 3:** Apply square roots. - \( 5 < \sqrt{29} < 6 \) **Conclusion:** \[ \sqrt{29} \quad \text{lies between} \quad 5 \quad \text{and} \quad 6 \] --- ### (D) \( \sqrt{50} \) **Step 1:** Find the nearest perfect squares around 50. - \( 7^2 = 49 \) - \( 8^2 = 64 \) **Step 2:** Determine where 50 falls. - \( 49 < 50 < 64 \) **Step 3:** Apply square roots. - \( 7 < \sqrt{50} < 8 \) **Conclusion:** \[ \sqrt{50} \quad \text{lies between} \quad 7 \quad \text{and} \quad 8 \] --- ### (3) \( 3\sqrt[3]{45} \) **Step 1:** Find the nearest perfect cubes around 45. - \( 3^3 = 27 \) - \( 4^3 = 64 \) **Step 2:** Determine where 45 falls. - \( 27 < 45 < 64 \) **Step 3:** Apply cube roots. - \( 3 < \sqrt[3]{45} < 4 \) **Step 4:** Multiply by 3. - \( 3 \times 3 = 9 \) - \( 3 \times 4 = 12 \) - So, \( 9 < 3\sqrt[3]{45} < 12 \) **Refined Estimate:** For a more precise interval: - \( \sqrt[3]{45} \) is slightly greater than \( 3.5 \) (since \( 3.5^3 = 42.875 \) and \( 3.6^3 = 46.656 \)) - Therefore, \( 3.5 < \sqrt[3]{45} < 3.6 \) - Multiplying by 3: \( 10.5 < 3\sqrt[3]{45} < 10.8 \) **Conclusion:** \[ 3\sqrt[3]{45} \quad \text{lies between} \quad 10 \quad \text{and} \quad 11 \] --- ### Summary 1. **\( -\sqrt{54} \)** lies between **-8** and **-7**. 2. **\( \sqrt{29} \)** lies between **5** and **6**. 3. **\( \sqrt{50} \)** lies between **7** and **8**. 4. **\( 3\sqrt[3]{45} \)** lies between **10** and **11**. --- Feel free to ask if you need further explanations or assistance!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine between which two integers the irrational numbers lie, let’s start with \( \sqrt{50} \). We know that \( 7^2 = 49 \) and \( 8^2 = 64 \). Since \( 50 \) is between \( 49 \) and \( 64 \), we conclude that \( \sqrt{50} \) lies between \( 7 \) and \( 8 \). Hence, \( 7 < \sqrt{50} < 8 \). Next, for \( \sqrt{29} \), we compare it to \( 5^2 = 25 \) and \( 6^2 = 36 \). Since \( 29 \) is between these two perfect squares, we find \( 5 < \sqrt{29} < 6 \). For \( 3 \sqrt[3]{45} \), first find \( \sqrt[3]{45} \). We know \( 3^3 = 27 \) and \( 4^3 = 64 \). So \( \sqrt[3]{45} \) lies between \( 3 \) and \( 4 \). Multiplying through by \( 3 \) gives \( 9 < 3\sqrt[3]{45} < 12 \). Finally, considering \( -\sqrt{54} \), we must keep in mind the negative sign. \( \sqrt{54} \) lies between \( 7 \) (since \( 7^2 = 49 \)) and \( 8 \) (since \( 8^2 = 64 \)). Thus, \( -8 < -\sqrt{54} < -7 \). Summarizing: 1. \( \sqrt{50} = 7 < \sqrt{50} < 8 \) 2. \( \sqrt{29} = 5 < \sqrt{29} < 6 \) 3. \( 3 \sqrt[3]{45} = 9 < 3 \sqrt[3]{45} < 12 \) 4. \( -\sqrt{54} = -8 < -\sqrt{54} < -7 \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad