Pregunta
upstudy study bank question image url

equation in vertex form for the parabola with focus \( (0,-6) \) and directrix \( y=-10 \). any fractions.

Ask by Crawford Perkins. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The vertex form of the parabola is \( y = \frac{1}{8}x^2 - 8 \).

Solución

To find the vertex form of the parabola with focus \((0, -6)\) and directrix \(y = -10\), follow these steps: 1. **Identify the Vertex:** - The vertex lies exactly halfway between the focus and the directrix. - The focus is at \(y = -6\) and the directrix is at \(y = -10\). - Midpoint \(y\)-coordinate: \(\frac{-6 + (-10)}{2} = -8\). - Therefore, the vertex is \((0, -8)\). 2. **Determine the Direction and Parameter \(p\):** - Since the focus is above the vertex, the parabola opens **upwards**. - The distance from the vertex to the focus (parameter \(p\)) is \(2\) units. 3. **Write the Vertex Form Equation:** - The vertex form of a vertically oriented parabola is: \[ y = a(x - h)^2 + k \] where \((h, k)\) is the vertex. - Here, \(h = 0\), \(k = -8\), and \(a = \frac{1}{4p} = \frac{1}{8}\). - Substituting these values in: \[ y = \frac{1}{8}(x - 0)^2 - 8 \] Simplifying: \[ y = \frac{1}{8}x^2 - 8 \] **Final Answer:** \[ y = \frac{1}{8}\,x^{\,2} -\,8 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation in vertex form, we start by determining the vertex's coordinates, which can be found as the midpoint between the focus and the directrix. The focus is at \( (0, -6) \) and the directrix is the line \( y = -10 \). The vertex will be at \( (0, -8) \), halfway between -6 and -10. The parabola opens upwards since the focus is above the directrix. Using the vertex form of a parabola, \( y = a(x - h)^2 + k \), where \( (h, k) \) is the vertex, we substitute \( h = 0 \) and \( k = -8 \). The value of \( a \) can be calculated using the distance formula: \( p = \frac{1}{4a} \). Here, \( p \) is the distance from the vertex to the focus, which is 2 units, so \( a = \frac{1}{8} \). Thus, the equation is: \[ y = \frac{1}{8}x^2 - 8 \] --- The midpoint serves as an essential link in understanding the balance and shape of the parabola, leading to its vertex form. This kind of geometric insight is not just helpful in solving quadratic equations but can also enhance spatial reasoning in various math problems. The directrix and focus play a crucial role in defining parabolas and can be related to real-world applications, such as satellite dishes or car headlights, where the focus helps to direct light or signals. Understanding this can lead to innovative designs that leverage the properties of parabolas to optimize functionality in engineering and technology.

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad