Pregunta
upstudy study bank question image url

Answer parts (a)-(e) for the function shown below \( f(x)=\mathrm{x}^{3}+4 \mathrm{x}^{2}-\mathrm{x}-4 \) a. Use the leading coefficient test to determine the graph's end behavior. Which statement describes the behavior at the ends of \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+4 \mathrm{x}^{2}-\mathrm{x}-4 \) ? A. The graph falls to the left and rises to the right B. The graph rises to the left and falls to the right. C. The graph falls to the left and to the right D. The graph rises to the left and to the right. b. Find the x -intercepts. State whether the graph possible crosses the x -axis, or touches the x -axis and turns around, at each intercept What are the x -intercepts? x \( =\square \) (Type an integer or a decimal Use a comma to separate answers as needed.

Ask by Curry Ortiz. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The x-intercepts are \( x = 1, -1, -4 \).

Solución

Let's solve the problem step by step. ### Part (a): Leading Coefficient Test The function given is \[ f(x) = x^3 + 4x^2 - x - 4 \] 1. **Identify the leading term**: The leading term of the polynomial is \(x^3\). 2. **Determine the degree**: The degree of the polynomial is 3, which is odd. 3. **Identify the leading coefficient**: The leading coefficient is 1, which is positive. According to the leading coefficient test: - For an odd degree polynomial with a positive leading coefficient, the graph will fall to the left and rise to the right. Thus, the correct answer for part (a) is: **A. The graph falls to the left and rises to the right.** ### Part (b): Finding the x-intercepts To find the x-intercepts, we need to solve the equation \(f(x) = 0\): \[ x^3 + 4x^2 - x - 4 = 0 \] We can use the Rational Root Theorem to test for possible rational roots. The possible rational roots are the factors of the constant term (-4) divided by the factors of the leading coefficient (1). The possible rational roots are: \[ \pm 1, \pm 2, \pm 4 \] Let's test these values to find the x-intercepts. 1. **Testing \(x = 1\)**: \[ f(1) = 1^3 + 4(1^2) - 1 - 4 = 1 + 4 - 1 - 4 = 0 \] So, \(x = 1\) is a root. 2. **Using synthetic division to factor the polynomial**: We can divide \(f(x)\) by \(x - 1\): \[ \begin{array}{r|rrrr} 1 & 1 & 4 & -1 & -4 \\ & & 1 & 5 & 4 \\ \hline & 1 & 5 & 4 & 0 \\ \end{array} \] This gives us: \[ f(x) = (x - 1)(x^2 + 5x + 4) \] 3. **Now, we need to factor \(x^2 + 5x + 4\)**: We can find the roots using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{-5 \pm \sqrt{25 - 16}}{2} = \frac{-5 \pm 3}{2} \] This gives us: \[ x = \frac{-2}{2} = -1 \quad \text{and} \quad x = \frac{-8}{2} = -4 \] Thus, the x-intercepts are \(x = 1\), \(x = -1\), and \(x = -4\). ### Behavior at the x-intercepts - For \(x = 1\): Since the factor is \((x - 1)\), the graph crosses the x-axis. - For \(x = -1\): Since the factor is \((x + 1)\), the graph crosses the x-axis. - For \(x = -4\): Since the factor is \((x + 4)\), the graph crosses the x-axis. ### Final Answers for Part (b) The x-intercepts are: \[ x = 1, -1, -4 \] The graph crosses the x-axis at each intercept. So, the final answer for part (b) is: \[ x = 1, -1, -4 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The leading coefficient of the function \( f(x) = x^3 + 4x^2 - x - 4 \) is positive (1), and since it's a cubic function (odd degree), the end behavior will be such that the graph falls to the left and rises to the right. Therefore, the answer to part (a) is: A. The graph falls to the left and rises to the right. To find the x-intercepts of the function, we need to solve the equation \( f(x) = 0 \) or \( x^3 + 4x^2 - x - 4 = 0 \). By either using synthetic division or factoring, or even the Rational Root Theorem, we can find that one of the x-intercepts is \( x = 1 \). Further investigation reveals that the polynomial can be factored as \( (x - 1)(x^2 + 5x + 4) = 0 \). The quadratic can be solved using the quadratic formula to find the other intercepts. Thus, the x-intercepts are: x = 1, -1, -4 The graph will cross the x-axis at all these points since they correspond to distinct roots.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad