Pregunta
upstudy study bank question image url

Graph the compound inequality on the number line. \[ x \leq-7 \text { or } x \geq-3 \]

Ask by Gross Sandoval. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the compound inequality \( x \leq -7 \) or \( x \geq -3 \) on a number line: 1. **Draw a number line** and mark the points \( -7 \) and \( -3 \). 2. **At \( -7 \)**, place a closed circle (since \( x \) can be equal to \( -7 \)) and shade to the left. 3. **At \( -3 \)**, place a closed circle (since \( x \) can be equal to \( -3 \)) and shade to the right. 4. **Combine both shaded regions** to represent all values less than or equal to \( -7 \) or greater than or equal to \( -3 \). This graph shows all possible values of \( x \) that satisfy either inequality.

Solución

To graph the compound inequality \( x \leq -7 \) or \( x \geq -3 \) on a number line, we can follow these steps: 1. **Identify the critical points**: The critical points from the inequalities are \( -7 \) and \( -3 \). 2. **Graph the first inequality \( x \leq -7 \)**: - This means that all values of \( x \) that are less than or equal to \( -7 \) are included. - On the number line, we will place a closed circle at \( -7 \) (indicating that \( -7 \) is included) and shade to the left. 3. **Graph the second inequality \( x \geq -3 \)**: - This means that all values of \( x \) that are greater than or equal to \( -3 \) are included. - On the number line, we will place a closed circle at \( -3 \) (indicating that \( -3 \) is included) and shade to the right. 4. **Combine the graphs**: - Since the compound inequality uses "or," we will combine both shaded regions. This means the graph will show all values to the left of \( -7 \) and all values to the right of \( -3 \). ### Final Representation: - The number line will have a closed circle at \( -7 \) with shading to the left, and a closed circle at \( -3 \) with shading to the right. This visually represents the solution to the compound inequality \( x \leq -7 \) or \( x \geq -3 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the compound inequality \( x \leq -7 \) or \( x \geq -3 \), start by placing a closed circle on -7 to indicate that -7 is included in the solution for the first part of the inequality. Then, shade the line to the left of -7. For the second part, place a closed circle on -3 and shade to the right of -3. Because this is an "or" situation, the graph will show two separate shaded areas: one extending to the left from -7 and the other extending to the right from -3. Remember, inequalities with "or" often highlight that any number within either condition is a part of the solution set, so you might find values like -8 (from the first inequality) or 0 (from the second inequality) are perfectly acceptable!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad