Pregunta
Find the sum of the first 10 terms of the following geometric sequences: \( \{1.5,3,6,12,24 \ldots\} \) 1526.0 1532.0 1534.5 1528.5
Ask by Washington Washington. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The sum of the first 10 terms is 1534.5.
Solución
To find the sum of the first 10 terms of the geometric sequence \( \{1.5, 3, 6, 12, 24, \ldots\} \), follow these steps:
1. **Identify the first term and the common ratio:**
- First term (\( a \)) = 1.5
- Common ratio (\( r \)) = \( \frac{3}{1.5} = 2 \)
2. **Use the formula for the sum of the first \( n \) terms of a geometric sequence:**
\[
S_n = a \frac{r^n - 1}{r - 1}
\]
Plugging in the values:
\[
S_{10} = 1.5 \frac{2^{10} - 1}{2 - 1} = 1.5 (1024 - 1) = 1.5 \times 1023 = 1534.5
\]
**Answer:** 1534.5
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the sum of the first 10 terms of the geometric sequence \( \{1.5, 3, 6, 12, 24, \ldots\} \), we identify the first term \( a = 1.5 \) and the common ratio \( r = \frac{3}{1.5} = 2 \). The formula for the sum \( S_n \) of the first \( n \) terms of a geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r} \] Plugging in the values for \( n = 10 \): \[ S_{10} = 1.5 \frac{1 - 2^{10}}{1 - 2} = 1.5 \frac{1 - 1024}{-1} = 1.5 \times 1023 = 1534.5 \] So, the sum of the first 10 terms is \( 1534.5 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium