Pregunta
Solve the following logarithmic equation. \( \begin{array}{l}\log _{10}(4 x)=2 \\ x=15 \\ x=30 \\ x=20 \\ x=25\end{array} \)
Ask by Marshall Vaughn. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 25 \)
Solución
To solve the logarithmic equation:
\[
\log_{10}(4x) = 2
\]
**Step 1: Convert the logarithmic equation to its exponential form.**
Recall that \(\log_b(a) = c\) is equivalent to \(b^c = a\). Applying this to the given equation:
\[
10^2 = 4x
\]
**Step 2: Simplify the equation.**
\[
100 = 4x
\]
**Step 3: Solve for \(x\).**
\[
x = \frac{100}{4} = 25
\]
**Conclusion:**
The correct value of \(x\) that satisfies the equation \(\log_{10}(4x) = 2\) is:
\[
\boxed{25}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve the logarithmic equation \( \log_{10}(4x) = 2 \), we can start by rewriting the equation in exponential form. This means \( 4x = 10^2 \). Since \( 10^2 = 100 \), we have: \[ 4x = 100 \] Now, dividing both sides by 4 gives: \[ x = \frac{100}{4} = 25 \] So, the solution to the equation is \( x = 25 \). The correct answer from the options provided is \( x = 25 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium