Sienna has 800 yards of fencing to enclose a rectangular area. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area? A rectangle that maximizes the enclosed area has a length of \( \square \) yards and a width of \( \square \) yards. 0 of 2
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To maximize the enclosed area with 800 yards of fencing, the optimal shape is a square, as it provides the maximum area for a given perimeter. Therefore, if \( P = 2L + 2W = 800 \), and solving for \( L \) and \( W \), we find that each side of the square is \( 200 \) yards long. This gives a maximum area of \( 200 \times 200 = 40,000 \) square yards. So, Sienna should create a square with dimensions of \( 200 \) yards by \( 200 \) yards for the maximum area of \( 40,000 \) square yards! How's that for a neat little optimization puzzle? 🏡✨