Pregunta
upstudy study bank question image url

Angela deposits \( \$ 3000 \) into an account with an APR of \( 2.5 \% \) for 7 years. Find the future value of the account if interest is compounded weekly. Round your answer to two decimal places. Formulas Simple Interest \[ \begin{array}{l} I=P r t \\ A=P(1+r t) \\ A=P\left(1+\frac{r}{n}\right)^{n t} \end{array} \] Future Value for Simple Interest Future Value for Compound Interest Future Value for Continuous Compound Interest \[ A=P e^{r} \] Annual Percentage Yield (APY) \[ \mathrm{APY}=\left(1+\frac{r}{n}\right)^{n}-1 \] Answer

Ask by Medina Chadwick. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The future value of Angela's account after 7 years, with weekly compounding, is **\$3,573.46**.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To find the future value using compound interest, we will use the formula \( A = P \left(1 + \frac{r}{n}\right)^{nt} \). Here, \( P \) is the principal amount (\$3000), \( r \) is the annual interest rate (2.5%, or 0.025), \( n \) is the number of times interest is compounded per year (weekly, so 52), and \( t \) is the time in years (7). Plugging in the values: \[ A = 3000 \left(1 + \frac{0.025}{52}\right)^{52 \times 7} \] Calculating it step-by-step: 1. Calculate \( \frac{0.025}{52} \approx 0.000480769 \). 2. Calculate \( 52 \times 7 = 364 \). 3. Compute \( A = 3000 \left(1 + 0.000480769\right)^{364} \). 4. Calculate \( A = 3000 \left(1.000480769\right)^{364} \). Using \( (1.000480769)^{364} \approx 1.1001 \) (using a calculator), \[ A \approx 3000 \times 1.1001 \approx 3300.30 \] So, the future value of the account is approximately \( \boxed{3300.30} \). Now, let's dive into a little extra info about compound interest! Did you know that compounding frequency can greatly affect your investment? The more frequently interest is compounded, the more you earn! For instance, compounding yearly versus weekly can lead to significantly different returns over time. So, if you want that future value to grow, look for high-frequency compounding options! Also, if you're really interested in maximizing your returns, consider the APY, or Annual Percentage Yield. This gives a better picture of your actual earnings compared to just the interest rate, as it accounts for compounding. So next time you open a savings account, be sure to ask about the APY—it's the secret sauce in boosting your savings!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad