Pregunta
upstudy study bank question image url

Solve: \( 7 x-8 y=24 \) (a) \( -10 x+16 y=-16 \)

Ask by Ayala Haynes. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = 8 \) and \( y = 4 \).

Solución

To solve the system of equations: \[ \begin{cases} 7x - 8y = 24 \quad \text{(Equation 1)} \\ -10x + 16y = -16 \quad \text{(Equation (a))} \end{cases} \] we can use the **elimination method**. Here's a step-by-step solution: ### Step 1: Simplify Equation (a) First, simplify Equation (a) by dividing all terms by 2 to make the coefficients smaller: \[ -10x + 16y = -16 \quad \Rightarrow \quad -5x + 8y = -8 \quad \text{(Equation 2)} \] Now, the system of equations is: \[ \begin{cases} 7x - 8y = 24 \quad \text{(Equation 1)} \\ -5x + 8y = -8 \quad \text{(Equation 2)} \end{cases} \] ### Step 2: Add Equations to Eliminate \( y \) Add Equation 1 and Equation 2 to eliminate \( y \): \[ (7x - 8y) + (-5x + 8y) = 24 + (-8) \] Simplifying: \[ 7x - 5x - 8y + 8y = 16 \quad \Rightarrow \quad 2x = 16 \] ### Step 3: Solve for \( x \) Divide both sides by 2: \[ x = \frac{16}{2} = 8 \] ### Step 4: Substitute \( x = 8 \) into One of the Original Equations Let's substitute \( x = 8 \) into Equation 1: \[ 7(8) - 8y = 24 \quad \Rightarrow \quad 56 - 8y = 24 \] Subtract 56 from both sides: \[ -8y = 24 - 56 \quad \Rightarrow \quad -8y = -32 \] Divide both sides by -8: \[ y = \frac{-32}{-8} = 4 \] ### Final Solution \[ x = 8 \quad \text{and} \quad y = 4 \] **Answer:** The solution is \( x = 8 \) and \( y = 4 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To consider the system of equations provided, we can manipulate them to find the solution set. The first equation can be rearranged or used as is: 1. \( 7x - 8y = 24 \) From the second equation, we can also rearrange it for clarity: 2. \( -10x + 16y = -16 \) First, let’s simplify the second equation by dividing all terms by -2: \[ 5x - 8y = 8 \] Now we have a new system of equations: 1. \( 7x - 8y = 24 \) 2. \( 5x - 8y = 8 \) Next, we can eliminate \( y \) by subtracting the second equation from the first: \[ (7x - 8y) - (5x - 8y) = 24 - 8 \] This simplifies to: \[ 2x = 16 \] Now, divide both sides by 2: \[ x = 8 \] We can now plug \( x = 8 \) back into one of the original equations to solve for \( y \). Using the first equation: \[ 7(8) - 8y = 24 \] \[ 56 - 8y = 24 \] \[ -8y = 24 - 56 \] \[ -8y = -32 \] Now, divide both sides by -8: \[ y = 4 \] Thus, the solution to the system of equations is \( x = 8 \) and \( y = 4 \). Just remember that when working with systems of equations, keeping variables organized and isolating one variable can simplify the solving process immensely, especially with elimination or substitution methods.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad