Pregunta
upstudy study bank question image url

QUESTION 23 (NOVEMBER 2014) 23.1 Given the quadratic sequence: \( -1 ;-7 ;-11 ; p ; \ldots \) 23.1.1 Write down the value of \( p \). (2) 23.1.2 Determine the \( n^{\text {th }} \) term of the sequence. (4) 23.1.3 The first difference between consecutive terms of the sequence is 96 calculate the values of these two terms (4) 23.2 The first three terms of a geometric sequence are: \( 16 ; 4 ; 1 \) 23.2.1 Calculate the value of the \( 12^{\text {th }} \) term. (Leave your answer in simplified exponential form.) (3) 23.2.2 Calculate the sum of the first 10 terms of the sequence. (2) 23.3 Determine the value of : \( \quad\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{5}\right) \ldots \) up to 98 factors (4)

Ask by Riley Bernard. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**23.1 Quadratic Sequence** 1. **Value of \( p \):** - The sequence is \( -1, -7, -11, p, \ldots \) - First differences: \( -6, -4 \) - Second difference: \( 2 \) - Next first difference: \( -4 + 2 = -2 \) - \( p = -11 + (-2) = -13 \) - **Answer:** \( p = -13 \) 2. **\( n^{\text{th}} \) Term:** - Using the formula: \[ a_n = n^2 - 9n + 7 \] - **Answer:** \( a_n = n^2 - 9n + 7 \) 3. **Terms with First Difference 96:** - Let the terms be \( a_k \) and \( a_{k+1} \) - \( a_{k+1} - a_k = 96 \) - Solving gives \( k = 52 \) - \( a_{52} = 2243 \) - \( a_{53} = 2339 \) - **Answer:** \( 2243 \) and \( 2339 \) **23.2 Geometric Sequence** 1. **12th Term:** - Common ratio \( r = \frac{1}{4} \) - \( a_{12} = 16 \cdot \left(\frac{1}{4}\right)^{11} = 2^{-18} \) - **Answer:** \( 2^{-18} \) 2. **Sum of First 10 Terms:** - Sum formula: \[ S_{10} = \frac{64}{3} \left(1 - \frac{1}{4^{10}}\right) \] - **Answer:** \( \frac{64}{3} \left(1 - \frac{1}{4^{10}}\right) \) **23.3 Product of Series** \[ \left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{5}\right) \ldots \text{ up to 98 factors} \] This product simplifies to: \[ \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \frac{6}{5} \times \ldots \times \frac{100}{99} \] Most terms cancel out, leaving: \[ \frac{100}{2} = 50 \] - **Answer:** \( 50 \)

Solución

Let's solve the problem step by step. ### 23.1 Quadratic Sequence The given quadratic sequence is: \( -1, -7, -11, p, \ldots \) #### 23.1.1 Write down the value of \( p \). To find \( p \), we first need to determine the pattern in the sequence. We can calculate the first differences between consecutive terms: 1. First difference between \( -1 \) and \( -7 \): \[ -7 - (-1) = -6 \] 2. First difference between \( -7 \) and \( -11 \): \[ -11 - (-7) = -4 \] The first differences are \( -6 \) and \( -4 \). The second difference (which should be constant for a quadratic sequence) is: \[ -4 - (-6) = 2 \] Since the second difference is constant, we can find the next first difference by adding \( 2 \) to the last first difference: \[ -4 + 2 = -2 \] Now, we can find \( p \): \[ p = -11 + (-2) = -13 \] Thus, the value of \( p \) is \( -13 \). #### 23.1.2 Determine the \( n^{\text{th}} \) term of the sequence. The first differences we have are: - First term: \( -6 \) - Second term: \( -4 \) - Third term: \( -2 \) The first differences form an arithmetic sequence with a common difference of \( 2 \). Let the first term of the quadratic sequence be \( a_1 = -1 \). The first difference \( d_1 = -6 \), the second difference \( d_2 = -4 \), and the third difference \( d_3 = -2 \). The \( n^{\text{th}} \) term can be expressed as: \[ a_n = a_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2} \cdot d \] where \( d \) is the second difference, which is \( 2 \). Substituting the values: \[ a_n = -1 + (n-1)(-6) + \frac{(n-1)(n-2)}{2} \cdot 2 \] \[ = -1 - 6(n-1) + (n-1)(n-2) \] \[ = -1 - 6n + 6 + n^2 - 3n + 2 \] \[ = n^2 - 9n + 7 \] Thus, the \( n^{\text{th}} \) term of the sequence is: \[ a_n = n^2 - 9n + 7 \] #### 23.1.3 The first difference between consecutive terms of the sequence is 96. Calculate the values of these two terms. Let the two consecutive terms be \( a_k \) and \( a_{k+1} \). The first difference is given by: \[ a_{k+1} - a_k = 96 \] Using the formula for the \( n^{\text{th}} \) term: \[ a_{k+1} = (k+1)^2 - 9(k+1) + 7 \] \[ a_k = k^2 - 9k + 7 \] Now, substituting these into the difference: \[ [(k+1)^2 - 9(k+1) + 7] - [k^2 - 9k + 7] = 96 \] \[ (k^2 + 2k + 1 - 9k - 9 + 7) - (k^2 - 9k + 7) = 96 \] \[ 2k + 1 - 9 = 96 \] \[ 2k - 8 = 96 \] \[ 2k = 104 \] \[ k = 52 \] Now, we can find \( a_{52} \) and \( a_{53} \): \[ a_{52} = 52^2 - 9 \cdot 52 + 7 = 2704 - 468 + 7 = 2243 \] \[ a_{53} = 53^2 - 9 \cdot 53 + 7 = 2809 - 477 + 7 = 2339 \] Thus, the two terms are \( 2243 \) and \( 2339 \). ### 23.2 Geometric Sequence The first three terms of the geometric sequence are: \( 16, 4, 1 \). #### 23.2.1 Calculate the value of the \( 12^{\text{th}} \) term. The common ratio \( r \) can be calculated as: \[ r = \frac{4}{16} = \frac{1}{4} \] The \( n^{\text{th}} \) term of a geometric sequence is given by: \[ a_n = a_1 \cdot r^{n-1} \] where \( a_1 = 16 \) and \( r = \frac{1}{4} \). Thus, the \( 12^{\text{th}} \) term is: \[ a_{12} = 16 \cdot \left(\frac{1}{4}\right)^{11} = 16 \cdot \frac{1}{4^{11}} = 16 \cdot \frac{1}{2^{22}} = \frac{16}{2^{22}} = \frac{2^4}{2^{22}} = \frac{1}{2^{18}} = 2^{-18} \] #### 23.2.2 Calculate the sum of the first 10 terms of the sequence. The sum \( S_n \) of the first \( n \) terms of a geometric sequence is given by: \[ S_n = a_1 \frac{1 - r^n}{1 - r} \] Substituting \( a_1 = 16 \), \( r = \frac{1}{4} \), and \( n = 10 \): \[ S_{10} = 16 \frac{1 - \left(\frac{1}{4}\right)^{10}}{1 - \frac{1}{4}} = 16 \frac{1 - \frac{1}{4^{10}}}{\frac{3}{4}} = 16 \cdot \frac{4}{3} \left(1 - \frac{1}{4^{10}}\right) \] \[ = \frac{64}{3} \left(1 - \frac{1}{4^{10}}\right) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In the world of sequences, quadratic sequences have a unique charm, evolving through a pattern defined by the second differences. The sequence you provided, \( -1, -7, -11, \ldots \), has a second difference of constant value \( -4 \). This means that \( p \) can be found by recognizing that we subtract 4 from the last first difference obtained, leading us to find the value of \( p \). Now, let's talk about geometric sequences! The sequence you've got, \( 16, 4, 1 \), showcases how ratios do the magic. Each term is obtained by multiplying the previous term by \( \frac{1}{4} \), showcasing an exponential decline. This is not just math; it’s a pattern of balance, where each term melts down to a fraction of the former. Exciting, right?

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad