Pregunta
vOCABULARY Rewrite the expression \( a^{-s i t} \) in radical form. Then state the index of the radical. \( a^{-s t} \) written in radical form is \( \frac{1}{a \frac{s}{t}} \times \). The index of the radical is \( \square \).
Ask by Huang Best. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( a^{-st} \) 的根式形式为 \( \frac{1}{\sqrt[t]{a^s}} \)。
根的指数是 \( t \)。
Solución
\( a^{-st} \) 的根式形式为 \( \frac{1}{\sqrt[t]{a^s}} \)。
根的指数是 \( t \)。
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
The expression \( a^{-s t} \) in radical form can be rewritten as \( \frac{1}{\sqrt[st]{a}} \). Here, we're taking the reciprocal of the radical, which is why we have that \( \frac{1}{\sqrt[st]{a}} \) format in place. The index of the radical, which tells us the degree of the root, is \( s t \). Think of it like this: if you have the square root, the index is 2; with a cube root, it's 3. Here, the index is precisely \( st \), making it as significant as the roots themselves!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium