Given points \( A(-2,0), B(-5,3, C(-9,-1), P(7,6), Q(4,0) \), and \( R(-4,4) \), which of the following proves that \( \triangle A B C^{\sim} \triangle P Q R \) ? By the Distance Formula, \( \mathrm{AB}=50, \mathrm{BC}=32 \), and \( \mathrm{CA}=18 \). \( \mathrm{Also}, \mathrm{PQ}=125, \mathrm{QR}=90 \), and \( \mathrm{RP}=45 \). Therefore, ABPQ \( =B C Q R=C A R P=25 \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by \( S S S \sim \). \( \operatorname{By} \) the Distance Formula, \( A B=50, B C=32 \), and \( C A=18 . A 1 s 0, P Q=125, Q R=90 \), and \( R P=45 \). Therefore, \( A B P Q=B C Q R=C A R P=25 \), and therefore, \( \triangle A B C \sim \triangle P \) QR by SSS ~. By the Distance Formula, \( A B=32-v, B C=42-v \), and \( C A=52-v . A l s o, P Q=35-V Q R=45-v \), and \( R P=55- \) V.Therefore, \( A B P Q=B C Q R=C A R P=2 V 5 V=10 v 5 \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by \( S S S \sim \). \( \operatorname{By} \) the Distance For mula, \( \mathrm{AB}=32, \mathrm{BC}=42 \), and \( \mathrm{CA}=52 \). Also, \( \mathrm{PQ}=35 \mathrm{QR}=45 \), and \( \mathrm{RP}=55 \). Therefore, \( \mathrm{ABPQ}=\mathrm{BCQR}=\mathrm{CARP}=25=10 \) 5 , and therefore, \( \triangle A B C \sim \triangle P Q R \) by SSS \( \sim \). By the Distance Formula, \( A B=32-v, B C=42-v \), and \( C A=52-v . A l s o, P Q=35-v, Q R=45-v \), and \( R P=55- \) V.Therefore, \( A B P Q=B C Q R=C A R P=2 \mathrm{~V} 5 \mathrm{~V}=10 \mathrm{~V} 5 \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by SAS \( \sim \).By the Distance Fo rmula, \( \mathrm{AB}=32, \mathrm{BC}=42 \), and \( \mathrm{CA}=52 \). Also, \( \mathrm{PQ}=35, \mathrm{QR}=45 \), and \( \mathrm{RP}=55 \). Therefore, \( \mathrm{ABPQ}=\mathrm{BCQR}=\mathrm{CARP}=25=1 \) 05 , and therefore, \( \triangle A B C \sim \triangle P Q R \) by \( S A S \sim \). \( B y \) the Distance Formula, \( A B=18, B C=32 \), and \( C A=50 \). Also, \( P Q=45, Q R=90 \), and \( R P=125 \). Therefore, \( A B P Q \) \( =B C Q R=C A R P=25 \), andtherefore, \( \triangle A B C \sim \triangle P Q R \) by \( S A S \sim \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Did you know that the similarity of triangles has been a key principle in geometry for thousands of years? Ancient Greeks, especially Euclid, laid the groundwork for our understanding of similar shapes. He showed that if two triangles have corresponding angles equal or the sides in proportion, they are similar! Fast forward to today, and we continue to build on these ideas, making connections between geometry and the world around us. In real-life situations, triangle similarity is commonly applied in navigation and architecture. For instance, architects use the principles of similar triangles when creating scaled models of buildings. By ensuring that the proportions are accurate, they can predict how the building will look and function while not needing to construct a full-size version first. It’s like planning a huge party in your backyard – you might sketch it out to make sure everything fits, avoiding any last-minute surprises!