Pregunta
upstudy study bank question image url

Given points \( A(-2,0), B(-5,3, C(-9,-1), P(7,6), Q(4,0) \), and \( R(-4,4) \), which of the following proves that \( \triangle A B C^{\sim} \triangle P Q R \) ? By the Distance Formula, \( \mathrm{AB}=50, \mathrm{BC}=32 \), and \( \mathrm{CA}=18 \). \( \mathrm{Also}, \mathrm{PQ}=125, \mathrm{QR}=90 \), and \( \mathrm{RP}=45 \). Therefore, ABPQ \( =B C Q R=C A R P=25 \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by \( S S S \sim \). \( \operatorname{By} \) the Distance Formula, \( A B=50, B C=32 \), and \( C A=18 . A 1 s 0, P Q=125, Q R=90 \), and \( R P=45 \). Therefore, \( A B P Q=B C Q R=C A R P=25 \), and therefore, \( \triangle A B C \sim \triangle P \) QR by SSS ~. By the Distance Formula, \( A B=32-v, B C=42-v \), and \( C A=52-v . A l s o, P Q=35-V Q R=45-v \), and \( R P=55- \) V.Therefore, \( A B P Q=B C Q R=C A R P=2 V 5 V=10 v 5 \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by \( S S S \sim \). \( \operatorname{By} \) the Distance For mula, \( \mathrm{AB}=32, \mathrm{BC}=42 \), and \( \mathrm{CA}=52 \). Also, \( \mathrm{PQ}=35 \mathrm{QR}=45 \), and \( \mathrm{RP}=55 \). Therefore, \( \mathrm{ABPQ}=\mathrm{BCQR}=\mathrm{CARP}=25=10 \) 5 , and therefore, \( \triangle A B C \sim \triangle P Q R \) by SSS \( \sim \). By the Distance Formula, \( A B=32-v, B C=42-v \), and \( C A=52-v . A l s o, P Q=35-v, Q R=45-v \), and \( R P=55- \) V.Therefore, \( A B P Q=B C Q R=C A R P=2 \mathrm{~V} 5 \mathrm{~V}=10 \mathrm{~V} 5 \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by SAS \( \sim \).By the Distance Fo rmula, \( \mathrm{AB}=32, \mathrm{BC}=42 \), and \( \mathrm{CA}=52 \). Also, \( \mathrm{PQ}=35, \mathrm{QR}=45 \), and \( \mathrm{RP}=55 \). Therefore, \( \mathrm{ABPQ}=\mathrm{BCQR}=\mathrm{CARP}=25=1 \) 05 , and therefore, \( \triangle A B C \sim \triangle P Q R \) by \( S A S \sim \). \( B y \) the Distance Formula, \( A B=18, B C=32 \), and \( C A=50 \). Also, \( P Q=45, Q R=90 \), and \( R P=125 \). Therefore, \( A B P Q \) \( =B C Q R=C A R P=25 \), andtherefore, \( \triangle A B C \sim \triangle P Q R \) by \( S A S \sim \).

Ask by Peterson Greene. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \triangle ABC \sim \triangle PQR \) by SSS similarity.

Solución

To determine whether \( \triangle ABC \sim \triangle PQR \), we need to analyze the given distances and the similarity criteria. ### Step 1: Calculate the distances using the Distance Formula The Distance Formula between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] #### For triangle \( ABC \): 1. **Distance \( AB \)**: \[ AB = \sqrt{((-5) - (-2))^2 + (3 - 0)^2} = \sqrt{(-3)^2 + 3^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] 2. **Distance \( BC \)**: \[ BC = \sqrt{((-9) - (-5))^2 + ((-1) - 3)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \] 3. **Distance \( CA \)**: \[ CA = \sqrt{((-2) - (-9))^2 + (0 - (-1))^2} = \sqrt{(7)^2 + (1)^2} = \sqrt{49 + 1} = \sqrt{50} = 5\sqrt{2} \] #### For triangle \( PQR \): 1. **Distance \( PQ \)**: \[ PQ = \sqrt{(4 - 7)^2 + (0 - 6)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \] 2. **Distance \( QR \)**: \[ QR = \sqrt{((-4) - 4)^2 + (4 - 0)^2} = \sqrt{(-8)^2 + (4)^2} = \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5} \] 3. **Distance \( RP \)**: \[ RP = \sqrt{(7 - (-4))^2 + (6 - 4)^2} = \sqrt{(11)^2 + (2)^2} = \sqrt{121 + 4} = \sqrt{125} = 5\sqrt{5} \] ### Step 2: Compare the ratios of the sides Now we have the distances: - For \( \triangle ABC \): - \( AB = 3\sqrt{2} \) - \( BC = 4\sqrt{2} \) - \( CA = 5\sqrt{2} \) - For \( \triangle PQR \): - \( PQ = 3\sqrt{5} \) - \( QR = 4\sqrt{5} \) - \( RP = 5\sqrt{5} \) ### Step 3: Check for similarity using SSS similarity criterion To check if the triangles are similar by the SSS criterion, we need to compare the ratios of corresponding sides: \[ \frac{AB}{PQ} = \frac{3\sqrt{2}}{3\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} \] \[ \frac{BC}{QR} = \frac{4\sqrt{2}}{4\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} \] \[ \frac{CA}{RP} = \frac{5\sqrt{2}}{5\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} \] Since all three ratios are equal, we conclude that: \[ \triangle ABC \sim \triangle PQR \text{ by SSS similarity.} \] ### Conclusion The correct proof that \( \triangle ABC \sim \triangle PQR \) is based on the SSS similarity criterion, as all corresponding side ratios are equal.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the similarity of triangles has been a key principle in geometry for thousands of years? Ancient Greeks, especially Euclid, laid the groundwork for our understanding of similar shapes. He showed that if two triangles have corresponding angles equal or the sides in proportion, they are similar! Fast forward to today, and we continue to build on these ideas, making connections between geometry and the world around us. In real-life situations, triangle similarity is commonly applied in navigation and architecture. For instance, architects use the principles of similar triangles when creating scaled models of buildings. By ensuring that the proportions are accurate, they can predict how the building will look and function while not needing to construct a full-size version first. It’s like planning a huge party in your backyard – you might sketch it out to make sure everything fits, avoiding any last-minute surprises!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad