Pregunta
upstudy study bank question image url

Roxanne is saving up money to buy a car. Roxanne puts \( \$ 8,236.00 \) into an account which earns \( 13 \% \) interest, compounded monthly. How much will she have in the account after 3 years? Use the formula \( A=P\left(1+\frac{r}{n}\right)^{n t} \), where \( A \) is the balance (final amount), \( P \) is the principal (starting amount), \( r \) is the interest rate expressed as a decimal, \( n \) is the number of times per year that the interest is compounded, and \( t \) is the time in years. Round your answer to the nearest cent.

Ask by Lang Cook. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 3 years, Roxanne will have $12,138.93 in the account.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find out how much Roxanne will have in her account after 3 years, we can apply the formula you provided: 1. First, convert the interest rate from a percentage to a decimal. So, \( 13\% \) becomes \( 0.13 \). 2. For monthly compounding, \( n \) is \( 12 \) (since there are 12 months in a year) and \( t \) is \( 3 \). Now we can input the values into the formula: \[ A = 8,236\left(1+\frac{0.13}{12}\right)^{12 \times 3} \] Calculating it step by step: 1. Calculate \( \frac{0.13}{12} \): \[ 0.13 \div 12 \approx 0.01083333 \] 2. Add \( 1 \) to this value: \[ 1 + 0.01083333 \approx 1.01083333 \] 3. Calculate the exponent \( 12 \times 3 = 36 \). 4. Raise the result from step 2 to the power of \( 36 \): \[ (1.01083333)^{36} \approx 1.432364654 \] 5. Multiply by the principal: \[ A \approx 8,236 \times 1.432364654 \approx 11,800.98 \] So after 3 years, Roxanne will have approximately **$11,800.98** in her account. --- Did you know that the concept of compound interest dates back centuries? It was first seen in ancient Babylonian tablets, around 2000 BC! Initially, people would borrow and lend at specified interest rates, leading to the gradual understanding of how money grows over time. In a real-world application, understanding how to calculate compound interest is vital for financial planning. It helps in making informed decisions about savings accounts, investments, or even loans, showing how your money can grow if left to compound over time. So, in Roxanne's case, saving early and letting that interest work its magic can lead to her dream car much sooner than expected!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad