Pregunta
upstudy study bank question image url

Question 1 of 14. Step 1 of 1 \( 0 / 14 \) Correct David deposits \( \$ 3000 \). Determine the APY if there is an APR of \( 4.5 \% \) compounded monthly. Express your answer as a percentage rounded to the nearest hundredth of a percent, if necessary. Formulas Simple Interest \[ \begin{array}{l} I=P r t \\ A=P(1+r t) \\ A=P\left(1+\frac{r}{n}\right)^{n t} \end{array} \] Future Value for Simple Interest Future Value for Compound Interest Future Value for Continuous Compound Interest \[ \begin{array}{l} A=P e^{n t} \\ A P Y=\left(1+\frac{r}{n}\right)^{n}-1 \end{array} \] Annual Percentage Yield (APY) Answer

Ask by Washington Young. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The APY is approximately 4.59%.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the APY given an APR of \( 4.5\% \) compounded monthly, we can use the formula for APY: \[ APY = \left(1 + \frac{r}{n}\right)^{n} - 1 \] In this case, \( r = 0.045 \) (4.5% expressed as a decimal) and \( n = 12 \) (number of compounding periods per year). Plugging these values in: \[ APY = \left(1 + \frac{0.045}{12}\right)^{12} - 1 \] Calculating it gives: \[ APY = \left(1 + 0.00375\right)^{12} - 1 \approx 0.0458607 \] Converting to percentage: \[ APY \approx 4.59\% \] So, the APY is approximately **4.59%** when rounded to the nearest hundredth of a percent. Got it? Let’s dive into some additional context! The concept of compounding interest dates back centuries and has played a pivotal role in finance ever since ancient civilizations started lending and borrowing. By compounding, you earn interest not just on the principal, but also on the interest that accumulates over time, which can significantly increase your total return. It’s like watching your money grow exponentially, thanks to the magic of mathematics! If you want to maximize your savings, keeping an eye on APY is essential. It directly reflects how much you’ll earn on your deposits compared to APR, which only measures the interest without considering compounding effects. Saving in accounts with higher APYs can lead to much greater financial benefits in the long run. So don’t just look at the rates—dig deeper into the compounding frequency!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad