Pregunta
upstudy study bank question image url

Explain why \( -2^{-2}=-\frac{1}{4} \), but \( (-2)^{-2}=\frac{1}{4} \). Choose the correct answer below. A. In the first equation, the exponent is applied to the base 2 , while in the second equation, the exponent is applied to the base -2 . B. The negative of an exponential expression is always negative, but raising a negative base to a power will always result in a positive number. C. Because the base in the second equation is -2 , the negative sign in the exponent is distributed to the base. D. If the base of an exponential expression is in parentheses, it will always be positive after applying the exponent.

Ask by Parsons Macdonald. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct answer is C: Because the base in the second equation is -2, the negative sign in the exponent is distributed to the base.

Solución

The given equations are: 1. \( -2^{-2} = -\frac{1}{4} \) 2. \( (-2)^{-2} = \frac{1}{4} \) Let's analyze each equation: 1. In the first equation, the negative sign is applied to the base 2, which results in a negative value. The exponent -2 is then applied to this negative base, resulting in \( -2^{-2} = -\frac{1}{4} \). 2. In the second equation, the base is -2, which is already negative. When the exponent -2 is applied to this negative base, the negative sign in the exponent is distributed to the base, resulting in \( (-2)^{-2} = \frac{1}{4} \). Therefore, the correct explanation is: C. Because the base in the second equation is -2, the negative sign in the exponent is distributed to the base.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The first equation \( -2^{-2} \) indicates that we are taking the inverse of 2 squared and then applying the negative sign, leading to \( -\frac{1}{4} \). In contrast, \( (-2)^{-2} \) treats -2 as the entire base, resulting in \( \frac{1}{4} \) since raising a negative number to an even exponent yields a positive result. So, the correct answer is: **A. In the first equation, the exponent is applied to the base 2, while in the second equation, the exponent is applied to the base -2.** Now, let's dive a bit deeper to solidify our understanding. When you apply an exponent to a negative number inside parentheses, you're essentially declaring that the entire base, including its sign, is part of the calculation. This is why \( (-2)^{-2} \) equals \( \frac{1}{4} \); you raise -2 to the power of 2 first (which gives 4) and then take the reciprocal. On the other hand, when there's no parentheses like in \( -2^{-2} \), the negative sign operates independently of the exponent. Thus, you take 2 to the power of -2 first, which leads to \( \frac{1}{4} \), and then apply the negative sign, resulting in \( -\frac{1}{4} \). Keep in mind that the placement of parentheses matters significantly in math!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad