Pregunta
upstudy study bank question image url

1.2 Compare the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) Using your comparison in Question 1.2., what general conclusion can be made regarding \( \cos (A-B), \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) for any values of A and B ? QUESTION 2 INVESTIGATING THE COSINE DOUBLE ANGLE All graphs should be sketched in the corresponding grid provided. Using your CALCULATOR, go to TABLE mode.

Ask by Gibson Barnett. in South Africa
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To compare \( \cos(A - B) \), \( \cos A - \cos B \), and \( \cos A \cdot \cos B + \sin A \cdot \sin B \): 1. **Cosine Subtraction Formula**: \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] So, \( \cos(A - B) \) is equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \). 2. **Comparison with \( \cos A - \cos B \)**: - \( \cos A - \cos B \) does not equal \( \cos(A - B) \) in general. - It can be negative or positive depending on \( A \) and \( B \). **General Conclusion**: - \( \cos(A - B) \) is always equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \). - \( \cos A - \cos B \) does not have a consistent relationship with \( \cos(A - B) \) or \( \cos A \cdot \cos B + \sin A \cdot \sin B \). **Investigating Cosine Double Angle**: - The double angle formula for cosine is: \[ \cos(2A) = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A \] - Use a calculator in TABLE mode to generate and plot values of \( \cos(2A) \) for various \( A \) to visualize its behavior. Simplify answer: \( \cos(A - B) \) is always equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \). The expression \( \cos A - \cos B \) does not consistently relate to \( \cos(A - B) \) or \( \cos A \cdot \cos B + \sin A \cdot \sin B \). For the cosine double angle, \( \cos(2A) = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A \). Use a calculator in TABLE mode to plot these values and observe the behavior of the cosine function with double angles.

Solución

To compare the values of \( \cos(A - B) \), \( \cos A - \cos B \), and \( \cos A \cdot \cos B + \sin A \cdot \sin B \), we can start by using the cosine subtraction formula and some algebraic manipulations. ### Step 1: Use the Cosine Subtraction Formula The cosine subtraction formula states: \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] ### Step 2: Compare \( \cos(A - B) \) with \( \cos A - \cos B \) Now, we need to compare \( \cos(A - B) \) with \( \cos A - \cos B \). 1. From the cosine subtraction formula, we have: \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] 2. The expression \( \cos A - \cos B \) can be rewritten using the identity: \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] ### Step 3: Analyze the Comparison Now we can analyze the relationship between these expressions: - **Equality**: From the cosine subtraction formula, we see that: \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] This shows that \( \cos(A - B) \) is equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \). - **Difference**: The expression \( \cos A - \cos B \) is not equal to \( \cos(A - B) \) in general. Instead, it can be negative or positive depending on the values of \( A \) and \( B \). ### General Conclusion From the above analysis, we can conclude that: - \( \cos(A - B) \) is always equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \). - \( \cos A - \cos B \) can vary and does not have a consistent relationship with \( \cos(A - B) \) or \( \cos A \cdot \cos B + \sin A \cdot \sin B \). ### Question 2: Investigating the Cosine Double Angle For the cosine double angle, the formula is: \[ \cos(2A) = \cos^2 A - \sin^2 A \] or equivalently, \[ \cos(2A) = 2\cos^2 A - 1 \] or \[ \cos(2A) = 1 - 2\sin^2 A \] To investigate this, you can use a calculator in TABLE mode to generate values for \( A \) and \( \cos(2A) \) based on the above formulas. ### Steps to Use the Calculator: 1. Set your calculator to TABLE mode. 2. Input values for \( A \) (e.g., from 0 to \( 360^\circ \) or \( 0 \) to \( 2\pi \) radians). 3. Calculate \( \cos(2A) \) using the double angle formulas. 4. Sketch the graphs of \( \cos(2A) \) against \( A \) on the provided grid. This will help visualize how the cosine function behaves with respect to the double angle.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When comparing the values of \( \cos (A-B) \), \( \cos A - \cos B \), and \( \cos A \cdot \cos B + \sin A \cdot \sin B \), one major takeaway is that \( \cos (A-B) \) can effectively be expressed through the cosine and sine values of angles A and B. Essentially, it is equal to the expression \( \cos A \cdot \cos B + \sin A \cdot \sin B \), showcasing the beauty and interconnectedness of trigonometric identities! However, \( \cos A - \cos B \) is quite different and relates more to the horizontal distance between points on the unit circle at angles A and B rather than their angular relationship. Now, as you delve into trigonometric functions, keep an eye on common mistakes such as confusing \( \cos (A-B) \) with its counterpart \( \cos (A+B) \). Another prevalent pitfall arises from neglecting the signs and proper squaring in the double angle formulas. Always double-check that your calculator is in the right mode to avoid mismatched values, especially when plotting or exploring visually—the cycle of trigonometric functions is full of patterns and repetitions that are more fun to discover than to miss out on!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad