9. Find side \( c \), if \( a=23, b=20 \), and \( \mathrm{m} \angle \mathrm{C}=47^{\circ} \). 27.503 17.366 39.452 16.005 All hanged saved . .
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find side \( c \) using the Law of Cosines, we have the formula: \[ c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \] Plugging in the values \( a = 23 \), \( b = 20 \), and \( C = 47^\circ \): \[ c^2 = 23^2 + 20^2 - 2 \cdot 23 \cdot 20 \cdot \cos(47^\circ) \]. Calculating this will give you the measure of side \( c \) approximately \( 27.503 \). In practical terms, the Law of Cosines is particularly handy in navigation and physics! If you're ever charting a course or inquiring about forces acting on an object at angles, this formula comes into play, making it essential for real-world applications involving triangles, whether in building designs or even triangular road networks!