Pregunta
upstudy study bank question image url

Two containers designed to hold water are side by side, both in the shape of a cylinder. Container A has a diameter of 14 feet and a height of 15 feet. Container B has a diameter of 18 feet and a height of 11 feet. Container A is full of water and the water is pumped into Containe B until Container A is empty. After the pumping is complete, what is the volume of water in Container B, to the nearest tent of a cubic foot?

Ask by Ingram Ellis. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After transferring all the water, Container B holds approximately 2,309.1 cubic feet of water.

Solución

To determine the volume of water in Container B after pumping all the water from Container A, we'll follow these steps: ### 1. Calculate the Volume of Container A Container A is a cylinder with: - **Diameter:** 14 feet ⇒ **Radius (r₁):** 7 feet - **Height (h₁):** 15 feet The volume \( V_A \) of a cylinder is given by: \[ V_A = \pi r_1^2 h_1 \] \[ V_A = \pi (7)^2 (15) \] \[ V_A = \pi \times 49 \times 15 \] \[ V_A = 735\pi \, \text{cubic feet} \] ### 2. Calculate the Capacity of Container B Container B is also a cylinder with: - **Diameter:** 18 feet ⇒ **Radius (r₂):** 9 feet - **Height (h₂):** 11 feet The volume \( V_B \) of Container B is: \[ V_B = \pi r_2^2 h_2 \] \[ V_B = \pi (9)^2 (11) \] \[ V_B = \pi \times 81 \times 11 \] \[ V_B = 891\pi \, \text{cubic feet} \] ### 3. Transfer Water from Container A to Container B Since Container A holds \( 735\pi \, \text{cubic feet} \) of water and Container B can hold up to \( 891\pi \, \text{cubic feet} \), Container B has enough capacity to hold all the water from Container A. ### 4. Final Volume in Container B After transferring all the water: \[ \text{Volume in Container B} = 735\pi \] ### 5. Calculate the Numerical Value Using \( \pi \approx 3.141592653589793 \): \[ 735\pi \approx 735 \times 3.141592653589793 \] \[ 735\pi \approx 2309.0706 \, \text{cubic feet} \] Rounding to the nearest tenth: \[ \text{Volume in Container B} \approx 2309.1 \, \text{cubic feet} \] **Answer:** After rounding, Container B holds approximately 2 309.1 cubic feet of water.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of water transferred to Container B from Container A, we first need to calculate the volume of each container using the formula for the volume of a cylinder, which is \( V = \pi r^2 h \). For Container A: - Diameter = 14 feet → Radius = 7 feet - Height = 15 feet \[ V_A = \pi (7)^2 (15) = \pi (49)(15) = 735\pi \text{ cubic feet} \approx 2304.6 \text{ cubic feet} \] For Container B: - Diameter = 18 feet → Radius = 9 feet - Height = 11 feet \[ V_B = \pi (9)^2 (11) = \pi (81)(11) = 891\pi \text{ cubic feet} \approx 2793.5 \text{ cubic feet} \] When we pump all the water from Container A into Container B, Container B will hold the entire volume of water from Container A: \[ V_B = 735\pi \approx 2304.6 \text{ cubic feet} \] Thus, to the nearest tenth, the volume of water in Container B after Container A is empty is approximately **2304.6 cubic feet**.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad