The interior angle of a regular polygon is 19 times the size of the exterior angle. Calculate the size of the interior angle and the number of sides the polygon has.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the problem, we start by letting the exterior angle be \( x \). According to the information given, the interior angle is \( 19x \). The relationship between the interior and exterior angles of a polygon is given by: \[ \text{Interior angle} + \text{Exterior angle} = 180^\circ \] Substituting the values we have: \[ 19x + x = 180^\circ \] This simplifies to: \[ 20x = 180^\circ \] Dividing by 20: \[ x = 9^\circ \] Now, to find the interior angle: \[ \text{Interior angle} = 19x = 19 \times 9^\circ = 171^\circ \] Next, we can find the number of sides \( n \) of the polygon using the formula for the exterior angle: \[ \text{Exterior angle} = \frac{360^\circ}{n} \] Setting this equal to \( 9^\circ \): \[ 9^\circ = \frac{360^\circ}{n} \] Rearranging gives: \[ n = \frac{360^\circ}{9^\circ} = 40 \] Thus, the interior angle is \( 171^\circ \) and the polygon has \( 40 \) sides.