Pregunta
upstudy study bank question image url

Given the function \( f(x)=\int_{2}^{x}\left(t^{3}+18 t^{2}+81 t\right) d t \), determine all \( x- \) values, if any, for which \( f \) has a point of inflection.

Ask by Dickson Schneider. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) \) has inflection points at \( x = -9 \) and \( x = -3 \).

Solución

To determine the points of inflection for the function \[ f(x) = \int_{2}^{x} \left(t^{3} + 18t^{2} + 81t\right) dt, \] we follow these steps: 1. **Find the First Derivative \( f'(x) \):** \[ f'(x) = \frac{d}{dx} \left( \int_{2}^{x} \left(t^{3} + 18t^{2} + 81t\right) dt \right) = x^{3} + 18x^{2} + 81x. \] 2. **Find the Second Derivative \( f''(x) \):** \[ f''(x) = \frac{d}{dx} \left( x^{3} + 18x^{2} + 81x \right) = 3x^{2} + 36x + 81. \] 3. **Determine Where \( f''(x) = 0 \):** \[ 3x^{2} + 36x + 81 = 0 \quad \Rightarrow \quad x^{2} + 12x + 27 = 0. \] Solving the quadratic equation: \[ x = \frac{-12 \pm \sqrt{144 - 108}}{2} = \frac{-12 \pm 6}{2} \Rightarrow x = -3 \text{ or } x = -9. \] 4. **Verify the Change in Concavity:** To confirm that these points are indeed inflection points, we check the third derivative \( f'''(x) \): \[ f'''(x) = \frac{d}{dx} \left( 3x^{2} + 36x + 81 \right) = 6x + 36. \] - At \( x = -3 \): \[ f'''(-3) = 6(-3) + 36 = 18 > 0. \] The second derivative changes from decreasing to increasing, indicating a change in concavity. - At \( x = -9 \): \[ f'''(-9) = 6(-9) + 36 = -18 < 0. \] The second derivative changes from increasing to decreasing, indicating a change in concavity. Since the second derivative changes sign at both \( x = -3 \) and \( x = -9 \), these are the points of inflection. **Final Answer:** All real numbers x equal to –9 and –3. The function f  has inflection points at x = –9 and x = –3.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the points of inflection for the function \( f(x) \), we first need to find the second derivative of \( f(x) \). From the Fundamental Theorem of Calculus, the first derivative is: \[ f'(x) = \frac{d}{dx} \left( \int_{2}^{x} \left(t^{3} + 18t^{2} + 81t\right) dt \right) = x^{3} + 18x^{2} + 81x. \] Next, we find the second derivative: \[ f''(x) = \frac{d}{dx}(f'(x)) = 3x^{2} + 36x + 81. \] To find the points of inflection, we set the second derivative equal to zero: \[ 3x^{2} + 36x + 81 = 0. \] Dividing the entire equation by 3 simplifies it to: \[ x^{2} + 12x + 27 = 0. \] Now, we can apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \): \[ x = \frac{-12 \pm \sqrt{12^{2} - 4 \cdot 1 \cdot 27}}{2 \cdot 1} = \frac{-12 \pm \sqrt{144 - 108}}{2} = \frac{-12 \pm \sqrt{36}}{2}. \] Calculating the square root yields: \[ x = \frac{-12 \pm 6}{2}. \] Thus, we find two possible values: 1. \( x = \frac{-6}{2} = -3 \) 2. \( x = \frac{-18}{2} = -9 \) To confirm these are points of inflection, we check the sign of \( f''(x) \) around these values: - For \( x < -9 \): Choose \( x = -10 \) → \( f''(-10) = 3(-10)^{2} + 36(-10) + 81 = 300 - 360 + 81 = 21 \) (positive). - For \( -9 < x < -3 \): Choose \( x = -5 \) → \( f''(-5) = 3(-5)^{2} + 36(-5) + 81 = 75 - 180 + 81 = -24 \) (negative). - For \( x > -3 \): Choose \( x = 0 \) → \( f''(0) = 81 \) (positive). Since \( f''(x) \) changes sign at \( x = -9 \) and \( x = -3 \), both of these points are indeed points of inflection. Thus, the final answer is that \( f \) has points of inflection at: \[ \boxed{-9 \text{ and } -3}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad