Pregunta
upstudy study bank question image url

Question 10 Find the final amount of money in an account if \( \$ 4,000 \) is deposited at \( 3 \% \) interest compounded annually and the money is left for 9 years. The final amount is \( \$ \square \) Round answer to 2 decimal places Submit Question

Ask by Morrison Martin. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The final amount is $5,219.09.

Solución

To find the final amount of money in an account after depositing $4,000 at 3% interest compounded annually for 9 years, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the final amount of money in the account - \( P \) is the principal amount (initial deposit) = $4,000 - \( r \) is the annual interest rate = 3% - \( n \) is the number of years = 9 Substitute the given values into the formula: \[ A = 4000 \left( 1 + \frac{3}{100} \right)^9 \] Now, we can calculate the final amount of money in the account. Calculate the value by following steps: - step0: Calculate: \(4000\left(1+\frac{3}{100}\right)^{9}\) - step1: Add the numbers: \(4000\left(\frac{103}{100}\right)^{9}\) - step2: Simplify: \(4000\times \frac{103^{9}}{100^{9}}\) - step3: Rewrite the expression: \(1000\times 4\times \frac{103^{9}}{100^{9}}\) - step4: Rewrite the expression: \(10^{3}\times 4\times \frac{103^{9}}{10^{18}}\) - step5: Reduce the numbers: \(4\times \frac{103^{9}}{10^{15}}\) - step6: Rewrite the expression: \(4\times \frac{103^{9}}{2^{15}\times 5^{15}}\) - step7: Rewrite the expression: \(2^{2}\times \frac{103^{9}}{2^{15}\times 5^{15}}\) - step8: Reduce the numbers: \(1\times \frac{103^{9}}{2^{13}\times 5^{15}}\) - step9: Multiply the fractions: \(\frac{103^{9}}{8192\times 5^{15}}\) The final amount of money in the account after depositing $4,000 at 3% interest compounded annually for 9 years is approximately $5,219.09. Therefore, the final amount is $5,219.09.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the final amount in an account with compound interest, you can use the formula: \[ A = P(1 + r)^t \] Where: - \( A \) is the final amount - \( P \) is the principal amount (the initial deposit) - \( r \) is the annual interest rate (as a decimal) - \( t \) is the number of years the money is invested or borrowed In this case, \( P = 4000 \), \( r = 0.03 \), and \( t = 9 \). Plugging in the values, we get: \[ A = 4000(1 + 0.03)^9 \] \[ A = 4000(1.03)^9 \] \[ A = 4000 \times 1.304773 \] \[ A \approx 5219.09 \] So, the final amount is approximately \( \$ 5,219.09 \). If you're ever lucky enough to have a savings account, keeping a close eye on the compounding interest can really boost your nest egg! Always consider how long you plan to leave your money untouched, because the magic of compounding really shines over longer periods! Additionally, many people often forget to account for inflation when looking at interest rates. Even though you're earning interest, the purchasing power of your dollars can decrease over time. Be sure to factor in inflation rates to assess the real growth of your savings!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad