12. Which function shows \( f(x)=-3 x^{2}+30 x-73 \) in vertex form? \( \begin{array}{l}\text { (A) } f(x)=-3(x-5)^{2}-148 \\ \text { (B) } f(x)=-3(x-5)^{2}-98 \\ \text { (C) } f(x)=-3(x-5)^{2}-73 \\ \text { (D) } f(x)=-3(x-5)^{2}+2\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Completing the square is a great way to convert a quadratic function into vertex form! For the function \( f(x) = -3x^2 + 30x - 73 \), first factor out -3 from the quadratic terms to simplify. You’ll find the vertex by rewriting it as \( f(x) = -3(x^2 - 10x) - 73 \). Completing the square inside the parentheses leads you to discover the vertex form! To double-check your work, remember that in vertex form, the vertex (h, k) can be found with the equation \( f(x) = a(x - h)^2 + k \). After completing the square, you'll find that the correct option is (A) \( f(x) = -3(x-5)^2 - 148 \). Fun fact: vertex form not only reveals the vertex but also helps graph the parabola much easier!