Pregunta
nainder when \( x^{3}-11 x+14 \) is divided by \( x-2 \) by completing the parts
Ask by Horton Daniel. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The remainder is 0.
Solución
To find the remainder when the polynomial \( f(x) = x^{3} - 11x + 14 \) is divided by \( x - 2 \), we can use two methods: the **Remainder Theorem** or **Polynomial Long Division**. Below, both methods are detailed step-by-step.
---
### **Method 1: Remainder Theorem**
The **Remainder Theorem** states that if a polynomial \( f(x) \) is divided by \( x - a \), the remainder is \( f(a) \).
1. **Identify \( a \):**
- Here, the divisor is \( x - 2 \), so \( a = 2 \).
2. **Evaluate \( f(2) \):**
\[
f(2) = (2)^3 - 11(2) + 14 = 8 - 22 + 14 = 0
\]
3. **Conclusion:**
- The remainder is **0**.
---
### **Method 2: Polynomial Long Division**
We'll divide \( f(x) = x^{3} - 11x + 14 \) by \( x - 2 \) step-by-step.
1. **Set Up the Division:**
\[
\begin{array}{r|l}
x - 2 & x^{3} + 0x^{2} - 11x + 14 \\
\end{array}
\]
*(Note: Added \( 0x^{2} \) for clarity.)*
2. **First Division:**
- **Divide:** \( x^{3} \) by \( x \) to get \( x^{2} \).
- **Multiply:** \( x^{2} \times (x - 2) = x^{3} - 2x^{2} \).
- **Subtract:**
\[
(x^{3} + 0x^{2}) - (x^{3} - 2x^{2}) = 2x^{2}
\]
- **Bring Down:** \( -11x \).
- **New Dividend:** \( 2x^{2} - 11x \).
3. **Second Division:**
- **Divide:** \( 2x^{2} \) by \( x \) to get \( 2x \).
- **Multiply:** \( 2x \times (x - 2) = 2x^{2} - 4x \).
- **Subtract:**
\[
(2x^{2} - 11x) - (2x^{2} - 4x) = -7x
\]
- **Bring Down:** \( +14 \).
- **New Dividend:** \( -7x + 14 \).
4. **Third Division:**
- **Divide:** \( -7x \) by \( x \) to get \( -7 \).
- **Multiply:** \( -7 \times (x - 2) = -7x + 14 \).
- **Subtract:**
\[
(-7x + 14) - (-7x + 14) = 0
\]
5. **Conclusion:**
- The **remainder is 0**.
---
### **Final Answer**
The remainder is **0**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the remainder when \( x^{3}-11x+14 \) is divided by \( x-2 \), we can use the Remainder Theorem, which states that the remainder of the division of a polynomial \( f(x) \) by \( x-c \) is \( f(c) \). Here, \( f(x) = x^{3}-11x+14 \) and \( c = 2 \). Calculating \( f(2) \): \[ f(2) = 2^{3} - 11(2) + 14 \] \[ = 8 - 22 + 14 \] \[ = 8 - 22 + 14 = 0 \] Thus, the remainder when \( x^3 - 11x + 14 \) is divided by \( x-2 \) is \( 0 \). This means \( x-2 \) is a factor of the polynomial \( x^3 - 11x + 14 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium