Pregunta
upstudy study bank question image url

7. On the grid, clearly label the region which satisfies all three inequalities below \( \begin{array}{lll}\text { 5. } \\ x \leq 2 & y<2 x-2 & x+y+2>0\end{array} \)

Ask by Howell Ward. in Zimbabwe
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The region that satisfies all three inequalities is the area to the left of \( x = 2 \), below \( y = 2x - 2 \), and above \( y = -x - 2 \).

Solución

Since I cannot plot the graph directly, I will describe how to visualize the inequalities step by step. 1. **Graph the line \( x = 2 \)**: - Draw a vertical dashed line at \( x = 2 \) (dashed because the inequality is \( \leq \), which includes the line). 2. **Graph the line \( y = 2x - 2 \)**: - This line has a y-intercept of -2 and a slope of 2. - Plot the points (0, -2) and (2, 2) to draw the line. - Use a dashed line since the inequality is \( < \). - Shade the area below this line. 3. **Graph the line \( y = -x - 2 \)**: - This line has a y-intercept of -2 and a slope of -1. - Plot the points (0, -2) and (-2, 0) to draw the line. - Use a dashed line since the inequality is \( > \). - Shade the area above this line. ### Final Region The region that satisfies all three inequalities will be: - To the left of the line \( x = 2 \). - Below the line \( y = 2x - 2 \). - Above the line \( y = -x - 2 \). ### Labeling the Region You can label the intersection area where all shaded regions overlap. This area will be bounded by the lines and will be the solution to the system of inequalities. If you have graphing software or graph paper, you can follow these steps to visualize the solution accurately.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle this problem, let's break down each inequality one by one! The first inequality, \( x \leq 2 \), means you're looking at everything to the left of the vertical line at \( x = 2 \). Next up, the inequality \( y < 2x - 2 \) suggests a slope; it's the area below the line that crosses the y-axis at -2 with a slope of 2. Lastly, the inequality \( x + y + 2 > 0 \) can be rearranged to \( y > -x - 2 \), indicating the region above the line that crosses the y-axis at -2 with a slope of -1. Now, the region that satisfies all three is where these shaded areas overlap—time to get to graphing! Pro tip: Always graph each inequality step-by-step and use different colors for clarity. A common mistake is forgetting to shade correctly based on the inequality signs; solid lines indicate 'equal to' while dashed lines mean 'not equal to'! Double-check which side of the line to shade; it can change everything!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad