Pregunta
upstudy study bank question image url

respectively where is measured in dollars and is the the number of Super Titan tires
measured in thousands.
(a) Graph these functions on given axes below labeling each. Both functions should
cover the appropriate domain. Place a point at the market equilibrium and label
it on the graph.
(b) What is a reasonable domain for the demand function? Express your answer in

Ask by Erickson Adkins. in the United States
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The market equilibrium is at 8,000 Super Titan tires with a price of $80. The domain for the demand function is .

Solución

To graph the demand function and the supply function , we need to determine the appropriate domain for each function.
For the demand function , the domain is all real numbers since the function is defined for any value of .
For the supply function , the domain is also all real numbers since the function is defined for any value of .
To find the market equilibrium, we need to set the demand function equal to the supply function and solve for :
Solving this equation will give us the value of at the market equilibrium.
Let’s solve the equation to find the market equilibrium point.
Solve the quadratic equation by following steps:
  • step0: Solve using square roots:
  • step1: Convert the decimal into a fraction:
  • step2: Add or subtract both sides:
  • step3: Divide both sides:
  • step4: Divide the numbers:
  • step5: Simplify the expression:
  • step6: Simplify the expression:
  • step7: Separate into possible cases:
  • step8: Rewrite:

    The market equilibrium point is at or . Since the number of Super Titan tires cannot be negative, the market equilibrium point is at .
Therefore, the market equilibrium point is at or 8,000 Super Titan tires.
Now, let’s calculate the price at the market equilibrium point by substituting into either the demand function or the supply function.
Evaluate the expression by following steps:
  • step0: Evaluate:
  • step1: Substitute:
  • step2: Evaluate the power:
  • step3: Subtract the numbers:

    The price at the market equilibrium point is $80.
Therefore, the market equilibrium point is at or 8,000 Super Titan tires, and the price is $80.
Now, let’s determine a reasonable domain for the demand function. Since the number of Super Titan tires cannot be negative, the domain for the demand function is .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the functions, let’s first identify their shapes and characteristics. The demand function is a downward-opening parabola, meaning it will start high at (where ) and gradually decrease as increases. The supply function is an upward-opening parabola, starting at when and increasing as increases.
To find the market equilibrium, we set the two equations equal to each other:
Combining terms gives:
Substituting back to find :
Thus, the market equilibrium is .
The reasonable domain for the demand function is where it remains non-negative. Given , we set :
However, since represents thousands of tires, a more sensible domain in real-world terms would be .
Happy graphing! 🖊️

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad