Pregunta
upstudy study bank question image url

A certain person had a brain that weighed 1.30 kg and contained \( 6.71 \times 10^{10} \) cells. Part 1 of 2 Assuming that each cell was completely filled with water (density \( =1.00 \frac{\mathrm{~g}}{\mathrm{~mL}} \) ), calculate the length of one side of such a cell if it were a cube. Round your answer to 3 significant digits. \[ 0.00268 \mathrm{~cm} \] Part: \( 1 / 2 \) Part 2 of 2 If the cells were spread out into a thin layer that was a single cell thick, what would be the total surface area (in square meters) for the top side of the cell layer? Round your answer to 3 significant digits. \( \square \) \( m^{2} \)

Ask by Chang Mcdonald. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total surface area for the top side of the cell layer is \( 4.82 \times 10^{1} \, \mathrm{m}^{2} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To calculate the total volume of the cells, we start from the brain's weight. Given the weight of the brain is 1.30 kg, and knowing the density of water is \(1.00 \frac{\mathrm{g}}{\mathrm{mL}}\), we convert the mass in kilograms to grams: 1.30 kg = 1300 g. Since the density of water is \(1.00 \frac{\mathrm{g}}{\mathrm{mL}}\), the total volume (in mL) is equal to the mass in grams. Therefore, the total volume (V) of the cells is: V = 1300 mL = 1300 cm³ (as 1 mL = 1 cm³). With \(6.71 \times 10^{10}\) cells, the average volume per cell is: \[ \text{Volume per cell} = \frac{1300 \, \text{cm}^3}{6.71 \times 10^{10}} \approx 1.937 \times 10^{-8} \, \text{cm}^3. \] Assuming each cell is a cube (which means \(V = a^3\), where \(a\) is the length of one side of the cube), we can find \(a\) by taking the cube root: \[ a = \sqrt[3]{1.937 \times 10^{-8}} \approx 0.00268 \, \text{cm}. \] Thus, the length of one side of the cell rounded to three significant digits is \(0.00268 \, \text{cm}\). For Part 2, if these cells are spread out into a single layer, we need to find the total surface area. First, calculate the surface area of a single cell. Each cell is a cube with a side length of \(0.00268 \, \text{cm}\). The surface area \(A\) of a cube is given by: \[ A = 6a^2. \] Calculating \(A\): \[ A = 6(0.00268)^2 \approx 6(7.1584 \times 10^{-6}) \approx 4.295 \times 10^{-5} \, \text{cm}^2. \] Now, to find the total surface area for all \(6.71 \times 10^{10}\) cells, we calculate: \[ \text{Total Surface Area} = 6.71 \times 10^{10} \times 4.295 \times 10^{-5} \approx 2883700.3 \, \text{cm}^2. \] To convert to square meters (note \(1 \text{m}^2 = 10,000 \text{cm}^2\)): \[ \text{Total Surface Area} = \frac{2883700.3 \, \text{cm}^2}{10000} \approx 288.37 \, \text{m}^2. \] Rounded to three significant digits, the total surface area for the top side of the single-cell thick layer is \(288 \, \text{m}^2\).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad