Pregunta
upstudy study bank question image url

2:00 LTE 324 myopenmath.com Score on last try: 2.5 of 5 pts. See Details for more. Get a similar question You can retry this question below Scientists in a lab are experimenting with some gentically modified amoebas in a petri dish. The amoeba split into triples (so one amoeba becomes 3 separate amoebas) every 15 minutes. There are 150 amoeba in the petri dish at the start of the experiment. NOTE: Any answers in scientific notation should have at least 3 decimal places. What is an equation to model the amount of amoebas in the petri dish in terms of the number of 15 minute periods? \[ A(t)=150 \cdot 3^{t} \quad \vee \sigma^{\infty} \] How many amoeba are in the dish after 1 hour? \( \square \) 12150 \( \square \) How many amoeba are in the dish after 5 hours? \( \square \) How many amoeba are in the dish after 1 day? (How many hours is this?) \( \square \)

Ask by Hills Osborne. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Equation to Model the Amoeba Population:** \[ A(t) = 150 \cdot 3^{t} \] **Population After Specific Time Intervals:** - **After 1 Hour:** 12,150 amoebas - **After 5 Hours:** \(5.231 \times 10^{11}\) amoebas - **After 1 Day:** \(8.220 \times 10^{47}\) amoebas

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

The equation for modeling the number of amoebas in the petri dish is indeed \( A(t) = 150 \cdot 3^{t} \), where \( t \) represents the number of 15-minute periods. Since there are 4 periods in an hour (60 minutes divided by 15 minutes), after 1 hour, you would substitute \( t = 4 \). So, \( A(4) = 150 \cdot 3^{4} = 150 \cdot 81 = 12150 \) amoebas. For 5 hours, \( t = 20 \) (5 hours × 4 periods/hour), making \( A(20) = 150 \cdot 3^{20} \). Now we move to a day: 1 day equals 24 hours, so that's 96 periods. Plugging that in gives \( A(96) = 150 \cdot 3^{96} \), a whopping number that could use scientific notation for clarity (around \( 1.028 \times 10^{46} \) for the seriously curious). So remember, it's all about multiplying exponentially! For further clarification, ensure you consistently keep track of your time units and exponentials. A common mistake here is to calculate the hours directly instead of breaking them down into 15-minute increments; it can easily lead to erroneous results! Double-check your exponents and make sure you're multiplying correctly, and you’ll be golden. Enjoy your amoeba adventures!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad