Pregunta
upstudy study bank question image url

9. Solve the system of equations using the method of your choice. \[ \begin{aligned} \frac{1}{3} x+y=1 \\ 2 x+3 y=12\end{aligned} \]

Ask by Warner Kelley. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = 9 \) and \( y = -2 \).

Solución

To solve the system of equations: \[ \begin{aligned} \frac{1}{3} x + y &= 1 \quad \quad \text{(Equation 1)} \\ 2x + 3y &= 12 \quad \quad \text{(Equation 2)} \end{aligned} \] we can use the **substitution method**. Here's a step-by-step solution: ### Step 1: Solve Equation 1 for \( y \) Starting with Equation 1: \[ \frac{1}{3} x + y = 1 \] Subtract \(\frac{1}{3}x\) from both sides to isolate \( y \): \[ y = 1 - \frac{1}{3}x \] ### Step 2: Substitute \( y \) into Equation 2 Now, substitute \( y = 1 - \frac{1}{3}x \) into Equation 2: \[ 2x + 3\left(1 - \frac{1}{3}x\right) = 12 \] Simplify the equation: \[ 2x + 3 - x = 12 \] Combine like terms: \[ (2x - x) + 3 = 12 \\ x + 3 = 12 \] ### Step 3: Solve for \( x \) Subtract 3 from both sides: \[ x = 12 - 3 \\ x = 9 \] ### Step 4: Find \( y \) Using the Value of \( x \) Substitute \( x = 9 \) back into the expression for \( y \): \[ y = 1 - \frac{1}{3}(9) \\ y = 1 - 3 \\ y = -2 \] ### Final Solution The solution to the system of equations is: \[ x = 9, \quad y = -2 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of equations, let's first simplify the first equation: \[ \frac{1}{3} x + y = 1 \implies y = 1 - \frac{1}{3}x. \] Now, substitute \(y\) into the second equation: \[ 2x + 3\left(1 - \frac{1}{3}x\right) = 12. \] This simplifies to: \[ 2x + 3 - x = 12 \implies x + 3 = 12 \implies x = 9. \] Now, substituting \(x = 9\) back into the equation for \(y\): \[ y = 1 - \frac{1}{3}(9) = 1 - 3 = -2. \] So, the solution to the system of equations is \(x = 9\) and \(y = -2\). Let’s summarize: The solution is \( (9, -2) \). Now let’s think about how this might play out in real life. Say you're managing a budget where the first equation represents the balance of your spending, while the second outlines total expenses. Understanding how to solve the equations allows you to effectively allocate funds, assuring you always stay within your limits. Also, envision a scenario where you're attempting to optimize resources for a project. By making use of systems of equations, you can mathematically model relationships between resources and objectives, ensuring you utilize your assets in the most efficient way possible. This mathematical skill is like a superpower for real-world planning and problem-solving!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad