Responder
To solve the given problems:
1. **Prove that \( \left(1 - \sin^2 \theta\right) \sec^2 \theta = 1 \):**
\[
\left(1 - \sin^2 \theta\right) \sec^2 \theta = 1
\]
2. **Prove that \( \tan x + \cot x = \sec x \csc x \):**
\[
\tan x + \cot x = \sec x \csc x
\]
3. **Given \( \sin x = \frac{5}{13} \) for \( 0^\circ < x < 90^\circ \), find \( \frac{\cos x - 2 \sin x}{2 \tan x} \):**
\[
\frac{\cos x - 2 \sin x}{2 \tan x} = \frac{12}{65}
\]
4. **Prove that \( \left(1 + \cos \theta\right) \left( \sec \theta - 1 \right) = 1 \):**
The expression is incomplete. Please provide the full expression for a complete proof.
**Summary:**
- The first two proofs are straightforward trigonometric identities.
- The third problem involves calculating a specific trigonometric expression given the value of \( \sin x \).
- The fourth problem requires the complete expression to be proven.
If you need further assistance or have additional questions, feel free to ask!
Solución
Sure, let's address each of your problems step by step.
---
### **1. Show that \( \left(1 - \sin^2 \theta\right) \sec^2 \theta = 1 \)**
**Proof:**
1. **Recall the Pythagorean Identity:**
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Therefore,
\[
1 - \sin^2 \theta = \cos^2 \theta
\]
2. **Substitute into the Original Expression:**
\[
\left(1 - \sin^2 \theta\right) \sec^2 \theta = \cos^2 \theta \cdot \sec^2 \theta
\]
3. **Simplify Using the Definition of Secant:**
\[
\sec \theta = \frac{1}{\cos \theta} \Rightarrow \sec^2 \theta = \frac{1}{\cos^2 \theta}
\]
So,
\[
\cos^2 \theta \cdot \sec^2 \theta = \cos^2 \theta \cdot \frac{1}{\cos^2 \theta} = 1
\]
**Conclusion:**
\[
\left(1 - \sin^2 \theta\right) \sec^2 \theta = 1
\]
---
### **2. Show that \( \tan x + \cot x = \sec x \csc x \)**
**Proof:**
1. **Express Tangent and Cotangent in Terms of Sine and Cosine:**
\[
\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}
\]
2. **Add the Two Expressions:**
\[
\tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}
\]
3. **Find a Common Denominator:**
\[
\tan x + \cot x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x}
\]
4. **Use the Pythagorean Identity:**
\[
\sin^2 x + \cos^2 x = 1
\]
So,
\[
\tan x + \cot x = \frac{1}{\sin x \cos x}
\]
5. **Express in Terms of Secant and Cosecant:**
\[
\sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x}
\]
Therefore,
\[
\sec x \csc x = \frac{1}{\cos x} \cdot \frac{1}{\sin x} = \frac{1}{\sin x \cos x}
\]
**Conclusion:**
\[
\tan x + \cot x = \sec x \csc x
\]
---
### **3. Given that \( \sin x = \frac{5}{13} \) for \( 0^\circ < x < 90^\circ \). Find \( \frac{\cos x - 2 \sin x}{2 \tan x} \)**
**Solution:**
1. **Find \( \cos x \):**
Using the Pythagorean identity:
\[
\sin^2 x + \cos^2 x = 1 \Rightarrow \left(\frac{5}{13}\right)^2 + \cos^2 x = 1
\]
\[
\frac{25}{169} + \cos^2 x = 1 \Rightarrow \cos^2 x = 1 - \frac{25}{169} = \frac{144}{169}
\]
Since \( 0^\circ < x < 90^\circ \), \( \cos x \) is positive:
\[
\cos x = \frac{12}{13}
\]
2. **Find \( \tan x \):**
\[
\tan x = \frac{\sin x}{\cos x} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}
\]
3. **Compute the Numerator (\( \cos x - 2 \sin x \)):**
\[
\cos x - 2 \sin x = \frac{12}{13} - 2 \cdot \frac{5}{13} = \frac{12}{13} - \frac{10}{13} = \frac{2}{13}
\]
4. **Compute the Denominator (\( 2 \tan x \)):**
\[
2 \tan x = 2 \cdot \frac{5}{12} = \frac{10}{12} = \frac{5}{6}
\]
5. **Form the Fraction and Simplify:**
\[
\frac{\cos x - 2 \sin x}{2 \tan x} = \frac{\frac{2}{13}}{\frac{5}{6}} = \frac{2}{13} \cdot \frac{6}{5} = \frac{12}{65}
\]
**Conclusion:**
\[
\frac{\cos x - 2 \sin x}{2 \tan x} = \frac{12}{65}
\]
---
### **4. Show that \( \left(\frac{1 + \cos \theta}{1}\right) \left(\frac{\sec \theta - 1}{\text{?}}\right) = 1 \)**
**Clarification Needed:**
The expression provided seems incomplete because the second fraction \( \frac{\sec \theta - 1}{\text{?}} \) is missing a denominator. To provide a meaningful proof, the complete expression is necessary.
However, assuming that the intended expression is:
\[
\left(1 + \cos \theta\right) \left( \sec \theta - 1 \right) = 1
\]
Let's explore this assumption.
**Attempted Proof:**
1. **Express Secant in Terms of Cosine:**
\[
\sec \theta = \frac{1}{\cos \theta}
\]
So,
\[
\sec \theta - 1 = \frac{1}{\cos \theta} - 1 = \frac{1 - \cos \theta}{\cos \theta}
\]
2. **Multiply with \( 1 + \cos \theta \):**
\[
(1 + \cos \theta) \left( \sec \theta - 1 \right) = (1 + \cos \theta) \cdot \frac{1 - \cos \theta}{\cos \theta}
\]
\[
= \frac{(1 + \cos \theta)(1 - \cos \theta)}{\cos \theta}
\]
3. **Use the Difference of Squares:**
\[
(1 + \cos \theta)(1 - \cos \theta) = 1 - \cos^2 \theta = \sin^2 \theta
\]
So,
\[
\frac{(1 + \cos \theta)(1 - \cos \theta)}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta}
\]
4. **Simplify the Expression:**
\[
\frac{\sin^2 \theta}{\cos \theta} = \sin \theta \cdot \frac{\sin \theta}{\cos \theta} = \sin \theta \cdot \tan \theta
\]
5. **Assessing Equality to 1:**
\[
\sin \theta \cdot \tan \theta = \sin \theta \cdot \frac{\sin \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta}
\]
This expression is **not** generally equal to 1 for all \( \theta \). It only equals 1 for specific angles where \( \frac{\sin^2 \theta}{\cos \theta} = 1 \), which does not hold true universally.
**Conclusion:**
Given the current form of the expression, \( \left(1 + \cos \theta\right) \left( \sec \theta - 1 \right) \) does **not** simplify to 1 for all \( \theta \). If there's a different intended expression or additional context, please provide the complete details so that a proper proof can be constructed.
---
If you have any further questions or need clarification on the fourth problem, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución