Pregunta
upstudy study bank question image url

Velocity of a Ball Thrown into the Air The position function of an object moving along a straight line is given by . The avera
the time interval is the average rate of change of over ; its (instantaneous) velocity at is the rate of change of at .
A ball is thrown straight up with an initial velocity of , so that its height (in feet) after is given by .
(a) What is the average velocity of the ball over the following time intervals?



(b) What is the instantaneous velocity at time ?
32
© What is the instantaneous velocity at time ? (To determine this, find the AROC over smaller and smaller intervals until the ROC is cle
Is the ball rising or falling at this time?

Ask by Schofield Cervantes. in the United States
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Summary:
  • Average Velocities:
    • : 16 ft/s
    • : 24 ft/s
    • : 30.4 ft/s
  • Instantaneous Velocity at seconds: 32 ft/s
  • Instantaneous Velocity at seconds: -96 ft/s (The ball is falling.)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To calculate the average velocity over the given time intervals, we can use the formula for average velocity, which is the change in position over the change in time . For example, over the interval :
Similarly, you can compute for the intervals and .
For instantaneous velocity at , you can calculate it using the derivative of :
At :
To determine the instantaneous velocity at :
This indicates that the ball is falling since the velocity is negative.
Lastly, did you know that the motion of a ball thrown upward has been studied in physics since the days of Galileo? He famously documented how objects move, laying the groundwork for classical mechanics. The equations we use to analyze such motion endure as fundamental to understanding physics today.
For a fun application, think of how this relates to sports! While playing basketball, when you shoot the ball, it follows a parabolic path similar to our height equation. Understanding its peak height and velocity can help players improve their shooting techniques by knowing the best angles and force for achieving those swishes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad