Pregunta
upstudy study bank question image url

Big House Nursery Inc. has issued 20 - year \( \$ 1,000 \) face value, \( 8 \% \) annual coupon bonds, with a yield to maturity of \( 10 \% \). The current price of the bond is A. \( \$ 1,196.36 \) B. \( \$ 1,000.00 \) C. \( \$ 829.73 \) D. There is not enough information to answer this question.

Ask by Mejia Hodgson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The current price of the bond is $829.73.

Solución

To find the current price of the bond, we can use the formula for the price of a bond: \[ P = \frac{C}{r} \times (1 - \frac{1}{(1 + r)^n}) + \frac{F}{(1 + r)^n} \] where: - \( P \) is the current price of the bond - \( C \) is the annual coupon payment - \( r \) is the yield to maturity - \( n \) is the number of years until maturity - \( F \) is the face value of the bond Given: - Face value (\( F \)) = $1,000 - Annual coupon payment (\( C \)) = 8% of $1,000 = $80 - Yield to maturity (\( r \)) = 10% = 0.10 - Number of years until maturity (\( n \)) = 20 years Substitute the given values into the formula: \[ P = \frac{80}{0.10} \times (1 - \frac{1}{(1 + 0.10)^{20}}) + \frac{1000}{(1 + 0.10)^{20}} \] Now, we can calculate the current price of the bond. Calculate the value by following steps: - step0: Calculate: \(\frac{80}{0.1}\times \left(1-\frac{1}{\left(1+0.1\right)^{20}}\right)+\frac{1000}{\left(1+0.1\right)^{20}}\) - step1: Add the numbers: \(\frac{80}{0.1}\times \left(1-\frac{1}{\left(1+0.1\right)^{20}}\right)+\frac{1000}{1.1^{20}}\) - step2: Add the numbers: \(\frac{80}{0.1}\times \left(1-\frac{1}{1.1^{20}}\right)+\frac{1000}{1.1^{20}}\) - step3: Convert the expressions: \(\frac{80}{0.1}\times \left(1-\frac{1}{\left(\frac{11}{10}\right)^{20}}\right)+\frac{1000}{1.1^{20}}\) - step4: Simplify: \(\frac{80}{0.1}\times \left(1-\frac{10^{20}}{11^{20}}\right)+\frac{1000}{1.1^{20}}\) - step5: Subtract the numbers: \(\frac{80}{0.1}\times \frac{11^{20}-10^{20}}{11^{20}}+\frac{1000}{1.1^{20}}\) - step6: Divide the numbers: \(800\times \frac{11^{20}-10^{20}}{11^{20}}+\frac{1000}{1.1^{20}}\) - step7: Convert the expressions: \(800\times \frac{11^{20}-10^{20}}{11^{20}}+\frac{1000}{\left(\frac{11}{10}\right)^{20}}\) - step8: Simplify: \(800\times \frac{11^{20}-10^{20}}{11^{20}}+\frac{10^{23}}{11^{20}}\) - step9: Multiply the numbers: \(\frac{800\times 11^{20}-800\times 10^{20}}{11^{20}}+\frac{10^{23}}{11^{20}}\) - step10: Transform the expression: \(\frac{800\times 11^{20}-800\times 10^{20}+10^{23}}{11^{20}}\) - step11: Add the numbers: \(\frac{800\times 11^{20}+200\times 10^{20}}{11^{20}}\) The current price of the bond is approximately $829.73. Therefore, the correct answer is: C. $829.73

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the current price of the bond, we can use the present value formula for bonds. The price of the bond is the present value of the future cash flows, including annual coupon payments and the face value at maturity. The annual coupon payment is \( 8\% \) of \( \$ 1,000 \), which equals \( \$ 80 \). Since the bond has a yield to maturity of \( 10\% \), we need to discount these cash flows at this rate. Using the formula for the price: \[ P = C \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) + \frac{F}{(1 + r)^{n}} \] Where: \( P \) = price of the bond \( C \) = annual coupon payment (\$80) \( r \) = yield to maturity (0.10) \( n \) = number of years to maturity (20) \( F \) = face value of the bond (\$1,000) Plugging in the values, we get: \[ P = 80 \times \left( \frac{1 - (1 + 0.10)^{-20}}{0.10} \right) + \frac{1000}{(1 + 0.10)^{20}} \] Calculating those components gives us a bond price of approximately \( \$829.73 \). Therefore, the answer is C. \( \$ 829.73 \). Note: Pricing bonds can often lead to confusion, especially when trying to gauge the relationship between the coupon rate and yield to maturity. Just remember: if the yield is higher than the coupon rate, the bond will be priced at a discount to par value, as we saw here!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad