Given \( f(x)=\left\{\begin{array}{cc}2 x+8 ; & x \leq-2 \\ x^{2}-3 ; & -23\end{array}\right. \)
find each required value.
Type answer in the blank. If the answer is no solution/does not exit, type DNE.
\( f(-2)= \)
\( \square \)
\( f(3)= \)
\( \square(0)= \)
\( \square \)
\( f(-5)= \)
A
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the required values of the function \( f(x) \), we evaluate it piecewise based on the given conditions. 1. **Finding \( f(-2) \)**: The condition for this case is \( x \leq -2 \). Therefore, we use the first piece of the function: \[ f(-2) = 2(-2) + 8 = -4 + 8 = 4. \] So, \( f(-2) = 4 \). 2. **Finding \( f(3) \)**: The condition for \( x > 3 \) indicates we should use the third piece of the function: \[ f(3) = DNE \text{ (since } 3 \text{ is not in the domain of } \sqrt{x+3}). \] 3. **Finding \( f(0) \)**: For \( 0 \) we look at the condition \( -2 < 0 < 3 \), and that falls in the second piece: \[ f(0) = 0^2 - 3 = 0 - 3 = -3. \] 4. **Finding \( f(-5) \)**: Here, since \( -5 \leq -2 \), we again use the first piece: \[ f(-5) = 2(-5) + 8 = -10 + 8 = -2. \] Putting this all together, the results are: \( f(-2)= 4 \) \( f(3)= DNE \) \( f(0)= -3 \) \( f(-5)= -2 \) Here are the answers in the blanks: \( f(-2)= \) 4 \( f(3)= \) DNE \( f(0)= \) -3 \( f(-5)= \) -2