Pregunta
upstudy study bank question image url

Given \( f(x)=\left\{\begin{array}{cc}2 x+8 ; & x \leq-2 \\ x^{2}-3 ; & -23\end{array}\right. \) find each required value. Type answer in the blank. If the answer is no solution/does not exit, type DNE. \( f(-2)= \) \( \square \) \( f(3)= \) \( \square(0)= \) \( \square \) \( f(-5)= \) A

Ask by Schwartz Fowler. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f(-2) = 4 \), \( f(3) = \text{DNE} \), \( f(0) = -3 \), \( f(-5) = -2 \)

Solución

Let's evaluate the given piecewise function \( f(x) \) at the specified points. The function is defined as: \[ f(x) = \begin{cases} 2x + 8 & \text{if } x \leq -2 \\ x^2 - 3 & \text{if } -2 < x < 3 \\ \sqrt{x + 3} & \text{if } x > 3 \end{cases} \] ### 1. \( f(-2) \) Since \( x = -2 \) falls into the first case (\( x \leq -2 \)): \[ f(-2) = 2(-2) + 8 = -4 + 8 = 4 \] **Answer:** \( f(-2) = 4 \) ### 2. \( f(3) \) At \( x = 3 \), we need to determine which case applies: - \( x = 3 \) is **not** less than 3 (\( -2 < x < 3 \)) and **not** greater than 3 (\( x > 3 \)). - Therefore, \( x = 3 \) does **not** fall into any of the defined cases. **Answer:** \( f(3) = \text{DNE} \) (Does Not Exist) ### 3. \( f(0) \) Since \( x = 0 \) falls into the second case (\( -2 < x < 3 \)): \[ f(0) = 0^2 - 3 = 0 - 3 = -3 \] **Answer:** \( f(0) = -3 \) ### 4. \( f(-5) \) Since \( x = -5 \) falls into the first case (\( x \leq -2 \)): \[ f(-5) = 2(-5) + 8 = -10 + 8 = -2 \] **Answer:** \( f(-5) = -2 \) --- ### Summary of Answers: - \( f(-2) = 4 \) - \( f(3) = \text{DNE} \) - \( f(0) = -3 \) - \( f(-5) = -2 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the required values of the function \( f(x) \), we evaluate it piecewise based on the given conditions. 1. **Finding \( f(-2) \)**: The condition for this case is \( x \leq -2 \). Therefore, we use the first piece of the function: \[ f(-2) = 2(-2) + 8 = -4 + 8 = 4. \] So, \( f(-2) = 4 \). 2. **Finding \( f(3) \)**: The condition for \( x > 3 \) indicates we should use the third piece of the function: \[ f(3) = DNE \text{ (since } 3 \text{ is not in the domain of } \sqrt{x+3}). \] 3. **Finding \( f(0) \)**: For \( 0 \) we look at the condition \( -2 < 0 < 3 \), and that falls in the second piece: \[ f(0) = 0^2 - 3 = 0 - 3 = -3. \] 4. **Finding \( f(-5) \)**: Here, since \( -5 \leq -2 \), we again use the first piece: \[ f(-5) = 2(-5) + 8 = -10 + 8 = -2. \] Putting this all together, the results are: \( f(-2)= 4 \) \( f(3)= DNE \) \( f(0)= -3 \) \( f(-5)= -2 \) Here are the answers in the blanks: \( f(-2)= \) 4 \( f(3)= \) DNE \( f(0)= \) -3 \( f(-5)= \) -2

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad