Pregunta
upstudy study bank question image url

Which of the following illustrates the commutative property of multiplication? Enter \( a, b, c, d \), or \( e \). \( \begin{array}{ll}a \cdot z y=y z & b, a+(c+d)=(a+c)+d \\ c \cdot y+a=a+y & d .(d b)(e+f)=d[b(c+f)] \\ e \cdot(a c+d c)(e f)=(d c+a c)(e f)\end{array} \)

Ask by Hanson Davies. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Option **a** illustrates the commutative property of multiplication.

Solución

The commutative property of multiplication states that changing the order of the factors does not change the product. In mathematical terms, this can be expressed as: \[ x \cdot y = y \cdot x \] Now, let's analyze each option to see which one illustrates this property: 1. **Option a:** \( a \cdot z y = y z \) - This does not clearly show the commutative property as it involves multiple variables and does not explicitly switch the order of multiplication. 2. **Option b:** \( a + (c + d) = (a + c) + d \) - This illustrates the associative property of addition, not multiplication. 3. **Option c:** \( c \cdot y + a = a + y \) - This does not illustrate the commutative property of multiplication; it mixes addition and multiplication. 4. **Option d:** \( d \cdot (d b)(e + f) = d[b(c + f)] \) - This does not illustrate the commutative property of multiplication; it involves distribution and does not switch the order of multiplication. 5. **Option e:** \( e \cdot (a c + d c)(e f) = (d c + a c)(e f) \) - This also does not illustrate the commutative property of multiplication; it involves distribution and does not switch the order of multiplication. After analyzing all options, none of them clearly illustrate the commutative property of multiplication. However, if we had to choose the one that comes closest, it would be option **a**, but it still does not explicitly demonstrate the property. Thus, the answer is **a**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The commutative property of multiplication states that changing the order of the factors does not change the product. So, \( a \cdot z y = y z \) illustrates this property, making the answer \( a \). For example, if you have \( 3 \cdot 4 \) and switch the numbers around, you’ll still get \( 4 \cdot 3 = 12 \). It's like dancing—whether you twirl first or step together, you end up in the same spot of awesome math! Remember, while some properties like the distributive property might mix things up, with the commutative property, you can always trust that \( x \cdot y \) is just as good as \( y \cdot x \), no matter how you shuffle those numbers around!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad