Which of the following illustrates the commutative property of multiplication? Enter \( a, b, c, d \), or \( e \). \( \begin{array}{ll}a \cdot z y=y z & b, a+(c+d)=(a+c)+d \\ c \cdot y+a=a+y & d .(d b)(e+f)=d[b(c+f)] \\ e \cdot(a c+d c)(e f)=(d c+a c)(e f)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The commutative property of multiplication states that changing the order of the factors does not change the product. So, \( a \cdot z y = y z \) illustrates this property, making the answer \( a \). For example, if you have \( 3 \cdot 4 \) and switch the numbers around, you’ll still get \( 4 \cdot 3 = 12 \). It's like dancing—whether you twirl first or step together, you end up in the same spot of awesome math! Remember, while some properties like the distributive property might mix things up, with the commutative property, you can always trust that \( x \cdot y \) is just as good as \( y \cdot x \), no matter how you shuffle those numbers around!