A winter storm is approaching Morristown, and the temperature is dropping at a rate of \( 3^{\circ} \mathrm{F} \) per hour. How many hours, \( h \), will it take for the temperature to drop \( 18^{\circ} \mathrm{F} \) ?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find how many hours \( h \) it will take for the temperature to drop \( 18^{\circ} \mathrm{F} \) at a rate of \( 3^{\circ} \mathrm{F} \) per hour, you can use the formula: \[ h = \frac{\text{Total temperature drop}}{\text{Rate of temperature drop}} = \frac{18^{\circ} \mathrm{F}}{3^{\circ} \mathrm{F}/\text{hour}} = 6 \text{ hours} \] So, it will take 6 hours for the temperature to drop \( 18^{\circ} \mathrm{F} \). Keep an eye on the weather updates because winter storms can sometimes bring unexpected changes!