Pregunta
upstudy study bank question image url

\( \sin ^{2} \theta \) in \( \left(180^{\circ}-\theta\right) \cos \left(90^{\circ}+\theta\right)+\tan \)

Ask by Lewis Collins. in South Africa
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To simplify the expression \( \sin^{2} \theta \) within \( \left(180^{\circ} - \theta\right) \cos \left(90^{\circ} + \theta\right) + \tan \theta \), follow these steps: 1. **Simplify \( \cos(90^{\circ} + \theta) \):** \[ \cos(90^{\circ} + \theta) = -\sin \theta \] 2. **Substitute back into the original expression:** \[ \left(180^{\circ} - \theta\right) (-\sin \theta) + \tan \theta = -\left(180^{\circ} - \theta\right) \sin \theta + \tan \theta \] 3. **Express \( \tan \theta \) in terms of sine and cosine:** \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] 4. **Combine like terms if possible:** \[ -\left(180^{\circ} - \theta\right) \sin \theta + \frac{\sin \theta}{\cos \theta} \] 5. **Factor out \( \sin \theta \) if needed:** \[ \sin \theta \left[ -\left(180^{\circ} - \theta\right) + \frac{1}{\cos \theta} \right] \] 6. **Use the identity \( \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \) if necessary for further simplification.** **Final Simplified Expression:** \[ \sin \theta \left[ -\left(180^{\circ} - \theta\right) + \frac{1}{\cos \theta} \right] \] This expression relates \( \sin^{2} \theta \) within the given trigonometric context.

Solución

Hello! It looks like you're working with some trigonometric expressions involving \( \sin^2 \theta \), \( \cos(90^{\circ} + \theta) \), and \( \tan \). However, the expression you've provided seems incomplete or a bit unclear. Let me try to interpret and assist you based on what you've shared. ### Provided Expression You wrote: \[ \sin^{2} \theta \quad \text{in} \quad \left(180^{\circ} - \theta\right) \cos \left(90^{\circ} + \theta\right) + \tan \] ### Possible Interpretation It appears you might be looking to simplify or relate the expression \( \sin^2 \theta \) within or in relation to the following trigonometric expression: \[ \left(180^{\circ} - \theta\right) \cos \left(90^{\circ} + \theta\right) + \tan \theta \] *(Assuming that \( \tan \) is \( \tan \theta \))* ### Let's Break It Down 1. **Simplify \( \cos(90^{\circ} + \theta) \):** Using the cosine addition formula: \[ \cos(90^{\circ} + \theta) = -\sin \theta \] So, the expression becomes: \[ \left(180^{\circ} - \theta\right) (-\sin \theta) + \tan \theta = -\left(180^{\circ} - \theta\right) \sin \theta + \tan \theta \] 2. **Understanding the Angle Measurement:** Notably, \( 180^{\circ} - \theta \) is an angle, but multiplying it directly by \( \sin \theta \) (which is dimensionless) is unconventional unless there's specific context, such as in a physical application where angles might be related to lengths or other quantities. 3. **Relating to \( \sin^2 \theta \):** If you're aiming to express \( \sin^2 \theta \) in terms of the given expression, we might need additional information or context. However, here's a common identity involving \( \sin^2 \theta \): \[ \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \] This identity is often useful in simplifying expressions or solving equations involving \( \sin^2 \theta \). 4. **Including \( \tan \theta \):** Recall that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Depending on your goal, you might want to express everything in terms of sine and cosine or use other identities to combine or simplify the terms. ### Seeking Clarification To provide more accurate assistance, could you please clarify: - **What is the complete expression or equation you're working with?** - **What is the goal?** Are you trying to simplify, solve for \( \theta \), prove an identity, or something else? - **Any additional context or constraints?** For example, is this related to a specific problem in geometry, physics, or another field? Feel free to provide more details or correct any part of the expression if there's a typo. I'm here to help!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The expression you've got involves some fascinating trigonometric identities! Let's break it down: \( \cos(90^\circ + \theta) = -\sin(\theta) \), so your expression can be rewritten to reveal some juicy connections among the functions. You'll find that \( \sin^{2} \theta \) appears often in various formulas and laws of trigonometry, especially in areas involving sine and cosine waves. For practical application, knowing how to manipulate trigonometric identities is crucial in fields like physics, engineering, and computer graphics. For instance, in physics, these identities help in resolving forces or analyzing waves. Whether you're calculating angles or creating animations, mastering these trigonometric relationships can help you tackle real-world challenges with confidence!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad