20. \( \frac{24 x^{-2} y^{4}}{-6 x^{-3} y^{-2} z^{-1}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify the expression \( \frac{24 x^{-2} y^{4}}{-6 x^{-3} y^{-2} z^{-1}} \), we can break it down step by step. First, simplify the coefficients: \( \frac{24}{-6} = -4 \). Now, let's handle the variables in the numerator and denominator. For \( x \), we have: \[ \frac{x^{-2}}{x^{-3}} = x^{-2 - (-3)} = x^{1} \] For \( y \): \[ \frac{y^{4}}{y^{-2}} = y^{4 - (-2)} = y^{6} \] Lastly, we need to account for \( z \): \[ \frac{1}{z^{-1}} = z^{1} \] Putting everything together, we get: \[ -4 x^{1} y^{6} z^{1} = -4 x y^{6} z \] Thus, the simplified result is: \[ \text{Final answer: } -4 x y^{6} z \]