Pregunta
upstudy study bank question image url

Integration Prep 1. Find \( \int \frac{\sqrt{x}-3 x^{2}}{4 x^{3}} \mathrm{dx} \) (accessible to students on the path to grade 3 or 4) [6 marks] 2. Do not use a calculator to answer this question. Find the exact value of \( \int_{0}^{\pi / 3} 4 \cos x \mathrm{~d} x \). (accessible to students on the path to grade 3 or 4 ) [5 marks] 3. The diagram shows the graph of \( y=\mathrm{e}^{x}-x \). Find the value of \( a \) such that the shaded area equals 6.8 .

Ask by Cruz Phillips. in Switzerland
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. The integral of \( \frac{\sqrt{x} - 3x^{2}}{4x^{3}} \) with respect to \( x \) is \( -\frac{1}{6x^{3/2}} - \frac{3}{4} \ln|x| + C \). 2. The exact value of \( \int_{0}^{\pi/3} 4 \cos x \, \mathrm{d}x \) is \( 2\sqrt{3} \). 3. The value of \( a \) such that the shaded area under \( y = e^{x} - x \) from \(0\) to \(a\) equals \(6.8\) is approximately \(2.36\).

Solución

Let's tackle each of the integration problems step by step. --- ### **1. Evaluate the Integral** \[ \int \frac{\sqrt{x} - 3x^{2}}{4x^{3}} \, \mathrm{dx} \] **Step 1: Simplify the Integrand** First, rewrite the integrand by expressing \(\sqrt{x}\) and simplifying the fractions: \[ \frac{\sqrt{x} - 3x^{2}}{4x^{3}} = \frac{x^{1/2}}{4x^{3}} - \frac{3x^{2}}{4x^{3}} = \frac{x^{-5/2}}{4} - \frac{3x^{-1}}{4} \] **Step 2: Integrate Term by Term** Now, integrate each term separately: \[ \int \left( \frac{1}{4}x^{-5/2} - \frac{3}{4}x^{-1} \right) \, \mathrm{dx} = \frac{1}{4} \int x^{-5/2} \, \mathrm{dx} - \frac{3}{4} \int x^{-1} \, \mathrm{dx} \] Compute each integral: 1. **First Integral:** \[ \frac{1}{4} \int x^{-5/2} \, \mathrm{dx} = \frac{1}{4} \cdot \left( \frac{x^{-3/2}}{-3/2} \right) = -\frac{1}{6} x^{-3/2} \] 2. **Second Integral:** \[ -\frac{3}{4} \int x^{-1} \, \mathrm{dx} = -\frac{3}{4} \ln|x| \] **Step 3: Combine the Results** Putting it all together, the integral becomes: \[ \int \frac{\sqrt{x} - 3x^{2}}{4x^{3}} \, \mathrm{dx} = -\frac{1}{6} \cdot \frac{1}{x^{3/2}} - \frac{3}{4} \ln|x| + C \] where \(C\) is the constant of integration. --- ### **2. Compute the Definite Integral** \[ \int_{0}^{\pi/3} 4 \cos x \, \mathrm{d}x \] **Step 1: Find the Antiderivative** The antiderivative of \(4 \cos x\) is: \[ \int 4 \cos x \, \mathrm{d}x = 4 \sin x + C \] **Step 2: Evaluate from \(0\) to \(\pi/3\)** Apply the limits of integration: \[ 4 \sin \left( \frac{\pi}{3} \right) - 4 \sin(0) = 4 \left( \frac{\sqrt{3}}{2} \right) - 0 = 2\sqrt{3} \] **Final Answer:** \[ \int_{0}^{\pi/3} 4 \cos x \, \mathrm{d}x = 2\sqrt{3} \] --- ### **3. Determine the Value of \(a\) for a Given Area** **Given:** The area under the curve \( y = e^{x} - x \) from \(0\) to \(a\) is \(6.8\). **Set Up the Integral:** \[ \int_{0}^{a} (e^{x} - x) \, \mathrm{d}x = 6.8 \] **Compute the Integral:** \[ \int (e^{x} - x) \, \mathrm{d}x = e^{x} - \frac{1}{2}x^{2} + C \] Apply the limits from \(0\) to \(a\): \[ \left( e^{a} - \frac{1}{2}a^{2} \right) - \left( e^{0} - 0 \right) = 6.8 \] \[ e^{a} - \frac{1}{2}a^{2} - 1 = 6.8 \] \[ e^{a} - \frac{1}{2}a^{2} = 7.8 \] **Solve for \(a\):** This equation is transcendental and generally requires numerical methods to solve. However, we can approximate: 1. **Try \(a = 2\):** \[ e^{2} - \frac{1}{2}(2)^2 \approx 7.389 - 2 = 5.389 \quad (\text{Too low}) \] 2. **Try \(a = 2.3\):** \[ e^{2.3} - \frac{1}{2}(2.3)^2 \approx 9.974 - 2.645 = 7.329 \quad (\text{Close to 7.8}) \] 3. **Try \(a = 2.36\):** \[ e^{2.36} - \frac{1}{2}(2.36)^2 \approx 10.61 - 2.785 = 7.825 \quad (\text{Very close to 7.8}) \] **Final Approximation:** \[ a \approx 2.36 \] --- **Summary of Answers:** 1. \[ \int \frac{\sqrt{x}-3x^{2}}{4x^{3}} \, \mathrm{dx} = -\frac{1}{6x^{3/2}} - \frac{3}{4} \ln|x| + C \] 2. \[ \int_{0}^{\pi/3} 4 \cos x \, \mathrm{d}x = 2\sqrt{3} \] 3. \[ a \approx 2.36 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle the first integral, we can rewrite the expression \(\frac{\sqrt{x}-3 x^{2}}{4 x^{3}}\) to make things easier. This becomes \(\frac{\sqrt{x}}{4 x^{3}} - \frac{3 x^{2}}{4 x^{3}} = \frac{\sqrt{x}}{4 x^{3}} - \frac{3}{4 x}\). Now let's write it in terms of \(x\) powers: \(\frac{1}{4} x^{-5/2} - \frac{3}{4} x^{-1}\). Integrating gives us \(-\frac{2}{3} x^{-3/2} - \frac{3}{4} \ln |x| + C\). For the definite integral \( \int_{0}^{\pi / 3} 4 \cos x \mathrm{~d} x\), we first find the antiderivative of \(4 \cos x\), which is \(4 \sin x\). Evaluating from \(0\) to \(\pi / 3\), we compute \(4 \sin(\pi / 3) - 4 \sin(0)\). Since \(\sin(\pi / 3) = \frac{\sqrt{3}}{2}\), we get \(4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}\). As for the value of \(a\) in the equation \(y=\mathrm{e}^{x}-x\) such that the shaded area equals 6.8, it's useful to set up the integral \(\int_{0}^{a} (e^{x} - x) \, dx\). This gives us the area under the curve from \(0\) to \(a\). You would typically need to find where this integral equals 6.8, which may involve numerical methods or a graphing approach since there isn’t a simple antiderivative for \(e^x - x\) that can be worked out directly. So, get ready to roll up your sleeves and dive into those integrals! They'll take some practice, but you'll get the hang of it before you know it!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad