Pregunta
upstudy study bank question image url

If \( \$ 500 \) are deposited into an account with a \( 4.5 \% \) interest rate, compounded annually, what is the balance after 6 years? \[ F=\$[\text { ? ] } \] \( F=P\left(1+\frac{r}{n}\right)^{\text {nt }} \)

Ask by Best Burton. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance after 6 years is approximately $651.13.

Solución

To find the balance after 6 years, we can use the formula for compound interest: \[ F = P\left(1 + \frac{r}{n}\right)^{nt} \] Given: - Principal amount (\( P \)) = $500 - Interest rate (\( r \)) = 4.5% = 0.045 - Compounding frequency (\( n \)) = 1 (compounded annually) - Time (\( t \)) = 6 years Substitute the given values into the formula: \[ F = 500\left(1 + \frac{0.045}{1}\right)^{1 \times 6} \] Now, we can calculate the balance after 6 years. Calculate the value by following steps: - step0: Calculate: \(500\left(1+0.045\right)^{6}\) - step1: Add the numbers: \(500\times 1.045^{6}\) - step2: Convert the expressions: \(500\left(\frac{209}{200}\right)^{6}\) - step3: Simplify: \(500\times \frac{209^{6}}{200^{6}}\) - step4: Rewrite the expression: \(100\times 5\times \frac{209^{6}}{200^{6}}\) - step5: Rewrite the expression: \(100\times 5\times \frac{209^{6}}{100^{6}\times 2^{6}}\) - step6: Reduce the numbers: \(5\times \frac{209^{6}}{100^{5}\times 2^{6}}\) - step7: Rewrite the expression: \(5\times \frac{209^{6}}{25^{5}\times 4^{5}\times 2^{6}}\) - step8: Rewrite the expression: \(5\times \frac{209^{6}}{5^{10}\times 4^{5}\times 2^{6}}\) - step9: Reduce the numbers: \(1\times \frac{209^{6}}{5^{9}\times 4^{5}\times 2^{6}}\) - step10: Multiply the fractions: \(\frac{209^{6}}{2^{16}\times 5^{9}}\) - step11: Evaluate the power: \(\frac{209^{6}}{65536\times 5^{9}}\) The balance after 6 years is approximately $651.13.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the future balance, we can use the formula \( F = P \left(1 + \frac{r}{n}\right)^{nt} \). Here, \( P = 500 \), \( r = 0.045 \) (which is 4.5% as a decimal), \( n = 1 \) (since it’s compounded annually), and \( t = 6 \) (for the 6 years). Plugging in the values, we get: \[ F = 500 \left(1 + \frac{0.045}{1}\right)^{1 \cdot 6} = 500 \left(1 + 0.045\right)^{6} = 500 \left(1.045\right)^{6} \] Now calculate \( (1.045)^{6} \): \[ (1.045)^{6} \approx 1.28368 \] So, \[ F \approx 500 \times 1.28368 \approx 641.84 \] Thus, the balance after 6 years is approximately \( F = \$641.84 \). Interest rates have a fascinating history! In ancient Babylon, they had a system for loans with interest rates that could reach as high as 33%. It was a community-driven approach where the interest paid was often reinvested in communal projects. This laid the groundwork for the more complex financial systems we have today! Looking to apply this interest calculation to real life? Imagine you’re setting aside money for a vacation. If you deposit that $500, you may not think it’s much at first, but with the right interest rate, you'll be pleasantly surprised by how much it grows over time! So next time you're planning a financial goal, remember to leverage the power of compound interest for a brighter bank account!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad