Pregunta
\[ \begin{array}{r}-10 x+2 y=22 \\ -2 x+2 y=-2\end{array} \] Answer Graph the linear equations by writing the equations in slope-intercept form: \( y=\square x+\square \)
Ask by Bowman Cruz. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
To graph the equations, rewrite them in slope-intercept form:
1. \( y = 5x + 11 \)
2. \( y = x - 1 \)
Plot the y-intercepts and use the slopes to draw the lines.
Solución
To graph the given system of linear equations, it's helpful to rewrite each equation in **slope-intercept form**, which is:
\[ y = mx + b \]
where:
- \( m \) is the **slope** of the line.
- \( b \) is the **y-intercept** (the point where the line crosses the y-axis).
Let's rewrite each equation accordingly.
### 1. First Equation: \( -10x + 2y = 22 \)
**Step 1:** Solve for \( y \).
\[
\begin{align*}
-10x + 2y &= 22 \\
2y &= 10x + 22 \quad \text{(Add } 10x \text{ to both sides)} \\
y &= \frac{10x + 22}{2} \quad \text{(Divide both sides by 2)} \\
y &= 5x + 11
\end{align*}
\]
**Slope-Intercept Form:**
\[ y = 5x + 11 \]
- **Slope (\( m \))**: 5
- **Y-intercept (\( b \))**: 11
### 2. Second Equation: \( -2x + 2y = -2 \)
**Step 1:** Solve for \( y \).
\[
\begin{align*}
-2x + 2y &= -2 \\
2y &= 2x - 2 \quad \text{(Add } 2x \text{ to both sides)} \\
y &= \frac{2x - 2}{2} \quad \text{(Divide both sides by 2)} \\
y &= x - 1
\end{align*}
\]
**Slope-Intercept Form:**
\[ y = x - 1 \]
- **Slope (\( m \))**: 1
- **Y-intercept (\( b \))**: -1
### Summary
- **First Equation:** \( y = \mathbf{5}x + \mathbf{11} \)
- **Second Equation:** \( y = \mathbf{1}x + \mathbf{-1} \)
You can now graph these equations by plotting their y-intercepts and using their slopes to determine the direction of each line.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To convert the given equations into slope-intercept form \( y = mx + b \), we solve for \( y \) in each equation. For the first equation, \(-10x + 2y = 22\): 1. Add \(10x\) to both sides: \(2y = 10x + 22\) 2. Divide by 2: \(y = 5x + 11\) For the second equation, \(-2x + 2y = -2\): 1. Add \(2x\) to both sides: \(2y = 2x - 2\) 2. Divide by 2: \(y = x - 1\) So, the equations in slope-intercept form are: \( y = 5x + 11 \) and \( y = x - 1 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium