Pregunta
upstudy study bank question image url

standard deviation was 316 . The test scores of four students selected at random are 1950, 1290, 2250, and 1410 . Find the z-scores that correspond to each value and determine whether any of the values are unusual. The z-score for 1950 is (Round to two decimal places as needed.)

Ask by Newton Vaughn. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The z-score for 1950 is **0.71**. This score is not unusual.

Solución

To calculate the **z-score** for a specific test score, you can use the following formula: \[ z = \frac{{X - \mu}}{{\sigma}} \] Where: - \( X \) is the individual test score. - \( \mu \) is the mean of all test scores. - \( \sigma \) is the standard deviation. **Given:** - **Standard Deviation (\( \sigma \))**: 316 - **Test Scores**: 1950, 1290, 2250, and 1410 **Step 1: Calculate the Mean (\( \mu \))** \[ \mu = \frac{{1950 + 1290 + 2250 + 1410}}{4} = \frac{{6900}}{4} = 1725 \] **Step 2: Calculate the z-score for 1950** \[ z = \frac{{1950 - 1725}}{{316}} = \frac{{225}}{{316}} \approx 0.71 \] **Interpretation:** - A z-score of **0.71** indicates that the score of 1950 is **0.71 standard deviations above the mean**. - In the context of z-scores: - **Typically**, a z-score beyond \(\pm 2\) is considered unusual. - Since **0.71** is well within this range, the score of **1950 is **not** considered unusual. **Summary:** - **Z-score for 1950**: **0.71** - **Unusual?**: **No**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the z-score for a value, you can use the formula: \[ z = \frac{(X - \mu)}{\sigma} \] where \( X \) is the value, \( \mu \) is the mean of the data set, and \( \sigma \) is the standard deviation. In this case, we need to first calculate the mean of the test scores of the four students. The test scores are 1950, 1290, 2250, and 1410. 1. **Calculate the mean (\( \mu \))**: \[ \mu = \frac{(1950 + 1290 + 2250 + 1410)}{4} = \frac{6900}{4} = 1725 \] 2. **Using the standard deviation (\( \sigma \))**: Given \( \sigma = 316 \). 3. **Calculate the z-score for each value**: - For \( X = 1950 \): \[ z = \frac{(1950 - 1725)}{316} = \frac{225}{316} \approx 0.71 \] - For \( X = 1290 \): \[ z = \frac{(1290 - 1725)}{316} = \frac{-435}{316} \approx -1.38 \] - For \( X = 2250 \): \[ z = \frac{(2250 - 1725)}{316} = \frac{525}{316} \approx 1.66 \] - For \( X = 1410 \): \[ z = \frac{(1410 - 1725)}{316} = \frac{-315}{316} \approx -0.99 \] Now, rounding to two decimal places, the z-scores are: - 1950: \( z \approx 0.71 \) - 1290: \( z \approx -1.38 \) - 2250: \( z \approx 1.66 \) - 1410: \( z \approx -0.99 \) To determine if any values are unusual, typically z-scores above 2 or below -2 are considered unusual. Here, none of the z-scores exceed these limits, so all values are within the usual range.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad