Pregunta
upstudy study bank question image url

5. How many perpendicular lines must be drawn in a triangle to prove the Law of Sines? 0 1

Ask by Long Deleon. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to draw **1 perpendicular line** to prove the Law of Sines in a triangle.

Solución

To prove the **Law of Sines** in a triangle, you need to draw **one perpendicular line**. Here's why: ### **Understanding the Law of Sines** The Law of Sines states that for any triangle: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] where: - \( a, b, c \) are the lengths of the sides opposite angles \( A, B, C \) respectively. ### **Proof Outline Using One Perpendicular** 1. **Draw the Perpendicular (Altitude):** - Choose one vertex of the triangle and draw a perpendicular line (altitude) to the opposite side. This divides the triangle into two right-angled triangles. 2. **Apply Trigonometric Ratios:** - In each right-angled triangle, use the sine function to relate the sides and angles: \[ \sin A = \frac{\text{opposite side}}{\text{hypotenuse}} \] - This leads to expressions that relate the sides of the original triangle to the sines of their opposite angles. 3. **Derive the Law of Sines:** - By manipulating these expressions, you arrive at the proportionality that defines the Law of Sines. ### **Conclusion** Only **one perpendicular line** is necessary to establish the necessary right-angled triangles for applying trigonometric ratios, which then lead to the proof of the Law of Sines. **Answer:** 1

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To prove the Law of Sines, you typically need to draw one perpendicular line from the vertex of the triangle to the opposite side, creating two right triangles. These right triangles help establish relationships between the angles and sides of the triangle, making it easier to apply the sine function effectively. A common mistake when starting this proof is forgetting to label all sides and angles properly. Without clear labels, it's easy to get confused about which sine values correspond to which angles. So, remember to keep everything organized and tidy in your proof!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad