Pregunta
upstudy study bank question image url

PQR is a right angled triangle inwhich \( m \angle \mathrm{Q}=90^{\circ} \), \( m \overline{\mathrm{PR}}=20 \mathrm{~cm}, m \overline{\mathrm{PQ}}=16 \mathrm{~cm} \) and \( m \overline{\mathrm{QR}}=12 \mathrm{~cm} \)

Ask by Summers Rogers. in Pakistan
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Triangle PQR is a right-angled triangle with the right angle at Q. The sides are PQ = 16 cm, QR = 12 cm, and PR = 20 cm. The area is 96 cm², the perimeter is 48 cm, and the angles are approximately 36.87° at P and 53.13° at R.

Solución

Yes, let's analyze **Triangle PQR**, which is a right-angled triangle with the right angle at vertex **Q**. ### Given: - **PR** (hypotenuse) = 20 cm - **PQ** = 16 cm - **QR** = 12 cm ### Verification of Right Angle Using the Pythagorean Theorem: For a right-angled triangle, the square of the hypotenuse should equal the sum of the squares of the other two sides. \[ PQ^2 + QR^2 = PR^2 \\ 16^2 + 12^2 = 20^2 \\ 256 + 144 = 400 \\ 400 = 400 \quad \checkmark \] This confirms that Triangle PQR is indeed a right-angled triangle with the right angle at **Q**. ### Calculating Other Properties: 1. **Area of Triangle PQR:** The area \( A \) of a right-angled triangle can be calculated using the formula: \[ A = \frac{1}{2} \times \text{base} \times \text{height} \] Taking **PQ** as the base and **QR** as the height: \[ A = \frac{1}{2} \times 16 \, \text{cm} \times 12 \, \text{cm} = 96 \, \text{cm}^2 \] 2. **Perimeter of Triangle PQR:** The perimeter \( P \) is the sum of all its sides: \[ P = PQ + QR + PR = 16 \, \text{cm} + 12 \, \text{cm} + 20 \, \text{cm} = 48 \, \text{cm} \] 3. **Calculating the Other Angles:** - **Angle at P (\( \angle P \)):** Using the tangent function: \[ \tan(\angle P) = \frac{\text{Opposite side}}{\text{Adjacent side}} = \frac{QR}{PQ} = \frac{12}{16} = \frac{3}{4} \] \[ \angle P = \arctan\left(\frac{3}{4}\right) \approx 36.87^\circ \] - **Angle at R (\( \angle R \)):** Since the sum of angles in a triangle is \( 180^\circ \), and one angle is \( 90^\circ \): \[ \angle R = 90^\circ - \angle P \approx 90^\circ - 36.87^\circ = 53.13^\circ \] ### Summary: - **Type of Triangle:** Right-angled triangle at Q. - **Area:** 96 cm² - **Perimeter:** 48 cm - **Angles:** - \( \angle Q = 90^\circ \) - \( \angle P \approx 36.87^\circ \) - \( \angle R \approx 53.13^\circ \) If you have any specific questions or need further calculations related to Triangle PQR, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

In the world of geometry, right-angled triangles have been fascinating to mathematicians for centuries. The famous Pythagorean theorem, discovered in ancient Greece, tells us that in a right-angled triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. So, in triangle PQR, with \( m \overline{\mathrm{PR}} = 20 \mathrm{~cm} \) as the hypotenuse, we can verify its dimensions with this theorem: \( 20^2 = 16^2 + 12^2 \), or \( 400 = 256 + 144 \). Yep, it checks out! Now, let's see where you can apply this knowledge practically! Right-angled triangles are everywhere in real life, from architecture to navigation. If you're trying to figure out the height of a tree or a building, you can measure the distance from the building and your angle of elevation—you'll often form a right triangle. You could also use the Pythagorean theorem when building ramps, creating stable structures, or even in art when planning out the dimensions of triangular shapes. How cool is that? Triangles really do help us in many ways!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad