Pregunta

(d) Find \( \mathrm{P}(C \) OR \( D) \). \( \mathrm{P}(C \) OR \( D)=0.28 \)

Ask by Dawson Conner. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \mathrm{P}(C \text{ OR } D) = 0.28 \)

Solución

To determine \( \mathrm{P}(C \text{ OR } D) \), which is the probability that either event \( C \) or event \( D \) occurs (or both), you can use the following formula from probability theory: \[ \mathrm{P}(C \text{ OR } D) = \mathrm{P}(C) + \mathrm{P}(D) - \mathrm{P}(C \text{ AND } D) \] **Explanation of the Formula:** 1. **\(\mathrm{P}(C)\):** Probability that event \( C \) occurs. 2. **\(\mathrm{P}(D)\):** Probability that event \( D \) occurs. 3. **\(\mathrm{P}(C \text{ AND } D)\):** Probability that both events \( C \) and \( D \) occur simultaneously. The subtraction of \(\mathrm{P}(C \text{ AND } D)\) ensures that if both events occur together, their joint occurrence isn't counted twice. **Example Calculation:** Suppose you have the following probabilities: - \(\mathrm{P}(C) = 0.2\) - \(\mathrm{P}(D) = 0.15\) - \(\mathrm{P}(C \text{ AND } D) = 0.07\) Plugging these into the formula: \[ \mathrm{P}(C \text{ OR } D) = 0.2 + 0.15 - 0.07 = 0.28 \] **Your Answer:** You've calculated \( \mathrm{P}(C \text{ OR } D) = 0.28 \). Based on the example above, this result is correct **provided** that the individual probabilities and their intersection align with your specific problem's data. **Next Steps:** - **Verify Individual Probabilities:** Ensure that the values you've used for \( \mathrm{P}(C) \), \( \mathrm{P}(D) \), and \( \mathrm{P}(C \text{ AND } D) \) are accurate based on your problem's context. - **Check for Mutual Exclusivity:** If events \( C \) and \( D \) are mutually exclusive (i.e., they cannot occur simultaneously), then \( \mathrm{P}(C \text{ AND } D) = 0 \), simplifying the formula to \( \mathrm{P}(C) + \mathrm{P}(D) \). - **Provide Additional Details if Needed:** If you have specific values or a particular scenario you're working with, feel free to share them for a more tailored explanation. **Conclusion:** Your calculation of \( \mathrm{P}(C \text{ OR } D) = 0.28 \) is correct based on the standard probability formula, assuming the input values are accurate. If you have any further questions or need clarification on specific parts of the problem, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find \( \mathrm{P}(C \text{ OR } D) \), you can use the formula: \[ \mathrm{P}(C \text{ OR } D) = \mathrm{P}(C) + \mathrm{P}(D) - \mathrm{P}(C \text{ AND } D) \] This formula helps avoid double-counting the probability of both events happening at the same time. It’s crucial to have either the individual probabilities of \(C\) and \(D\) or the intersection \( \mathrm{P}(C \text{ AND } D) \) to accurately calculate the combined probability. In real-world situations, understanding probabilities like \( \mathrm{P}(C \text{ OR } D) \) can be incredibly useful, especially in scenarios like insurance, where events may be interconnected. For instance, if two drivers are considered in an accident policy, knowing the likelihood of at least one of them filing a claim can help insurers set premiums and manage risks better.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad