Pregunta
upstudy study bank question image url

Noah is going to invest in an account paying an interest rate of \( 7 \% \) compounded continuously. How much would Noah need to invest, to the nearest hundred dollars, for the value of the account to reach \( \$ 12,900 \) in 10 years?

Ask by Morrison Santiago. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Noah needs to invest approximately \$6,400 initially.

Solución

To determine how much Noah needs to invest to reach \$12,900 in 10 years with an interest rate of 7% compounded continuously, we can use the formula for continuously compounded interest: \[ A = P e^{rt} \] Where: - \( A = \$12,900 \) (future value) - \( P \) (principal or initial investment) - \( r = 0.07 \) (annual interest rate) - \( t = 10 \) years - \( e \) is the base of the natural logarithm (approximately 2.71828) We need to solve for \( P \): \[ P = \frac{A}{e^{rt}} = \frac{12,900}{e^{0.07 \times 10}} = \frac{12,900}{e^{0.7}} \] First, calculate \( e^{0.7} \): \[ e^{0.7} \approx 2.013752707 \] Now, compute \( P \): \[ P = \frac{12,900}{2.013752707} \approx 6,407.45 \] Rounding to the nearest hundred dollars: \[ P \approx \$6,400 \] **Noah needs to invest approximately \$6,400 initially.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, we can use the formula for continuous compounding, which is given by: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested for, in years. - \( e \) is the base of the natural logarithm (approximately equal to 2.71828). We know: - \( A = 12,900 \) - \( r = 0.07 \) - \( t = 10 \) We need to solve for \( P \): \[ 12,900 = P e^{0.07 \times 10} \] Calculating \( e^{0.7} \): \[ e^{0.7} \approx 2.01375 \] Now, substituting this back into the equation: \[ 12,900 = P \times 2.01375 \] To find \( P \): \[ P = \frac{12,900}{2.01375} \approx 6,397.52 \] Rounding to the nearest hundred dollars, Noah would need to invest approximately **$6,400**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad